Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to $\mathbf{2}$ more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note: This examination consists of 10 questions on 4 pages.
Marks

$\underline{0}$. No	Time: 3 hours	Value	Earned
1.	Define and explain the following: a) Difference between precision and accuracy b) Difference between root mean square error and standard deviation c) Difference between covariance and correlation coefficient d) Internal and external reliability e) Type I and type II errors in statistical testing	15	
2.	The distance between Point A and Point B has been independently measured 5 times with the same precision using a distance measuring device and the standard deviation of the obtained mean distance is 1.58 cm . Determine the precision of the distance measurement. A \qquad B	5	
3.	Given the variance-covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $\mathrm{C}_{\mathrm{x}}=\left[\begin{array}{ll} 0.0484 & 0.0246 \\ 0.0246 & 0.0196 \end{array}\right] \mathrm{m}^{2}$	10	

7.	A distance has been independently measured 4 times and its sample unit variance obtained from the adjustment $\hat{\sigma}_{0}^{2}$ is equal to 1.44 cm . If the apriori standard deviation σ_{0} is 1.0 cm , conduct a statistic test to decide if the adjustment result is acceptable with a significance level of $\alpha=5 \%$. The critical values that might be required in the testing are provided in the following table: where $\chi_{\alpha, v=3}^{2}$ is determined by the equation $\alpha=\int_{\chi_{\alpha, v=3}^{2}}^{\infty} \chi^{2}(\mathrm{x}) \mathrm{dx}$ and v is the degree of freedom.	10
8.	Given a geodetic network with 100 observations and 50 unknown points, use mathematical equations to explain which method of adjustment (parametric or conditional) you will recommend for this problem.	5
9.	Given the angle measurements of a triangle along with their standard deviations, conduct a conditional least squares adjustment. You are required to compute the following quantities: a) the estimated residuals b) the variance-covariance matrix of the estimated residuals c) the estimated observations d) the variance-covariance matrix of the estimated observations e) the estimated variance factor	15

	Conduct a parametric least squares adjustment to the same data given in Problem 9. You are required to compute the following quantities: a) the estimated parameters		
10.	b) the variance-covariance matrix of the estimated parameters c) the estimated difference between α and β d) the variance of the estimated difference between α and β	10	
	Total Marks:	100	

