CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C2 - LEAST SQUARES ESTIMATION & DATA ANALYSIS October 2021

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note:	e: This examination consists of 10 questions on 4 pages.		<u>Marks</u>	
<u>Q. No</u>	Time: 3 hours	Value	Earned	
1.	 Define and explain the following: a) Difference between precision and accuracy b) Difference between root mean square error and standard deviation c) Difference between covariance and correlation coefficient d) Internal and external reliability e) Type I and type II errors in statistical testing 	15		
2.	The distance between Point A and Point B has been independently measured 5 times with the same precision using a distance measuring device and the standard deviation of the obtained mean distance is 1.58 cm. Determine the precision of the distance measurement. $A \leftarrow B$	5		
3.	Given the variance-covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $C_{x} = \begin{bmatrix} 0.0484 & 0.0246\\ 0.0246 & 0.0196 \end{bmatrix} m^{2}$	10		

	Given the follow	una mathamat	1001 model				
	Given the follov $f(l, \mathbf{x}) = 0$	-					
	$f(l, x) = 0 \qquad C_l C_x$						
4.	where f is the vector of mathematical models, x is the vector of unknown parameters and C_x is its variance matrix, <i>l</i> is the vector of observations and C_l is its variance matrix.						
		a) Linearize the mathematical model					
	b) Form	ulate the variation	ion function	<i>.</i> •			
	c) Derive	e the least squa	ires normal equ	lation			
	Given the variar	nce-covariance	matrix of the r	neasurement v	vector $\ell = \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix}$:	
5.	$\mathbf{C}_{\ell} = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \end{bmatrix}$	$\frac{1}{3}$ $\frac{2}{3}$				5	
	L 3						
	and the function	$\mathbf{x} = \ell_1 + \ell_2, \mathrm{d}$	etermine C_x .				
	and the function						
	and the function An angle has be	en measured in	ndependently 5		-		
	An angle has be and the observe level of confide	en measured in d values are g ence if the san	ndependently 5 given in the fol	llowing table.	Test at the 95	5%	
	An angle has be and the observe	en measured in d values are g ence if the san	ndependently 5 given in the fol	llowing table.	Test at the 95	5%	
	and the function An angle has be and the observe level of confide true angle value α_1	then measured in d values are gence if the san $45^{\circ}00'00''$.	independently 5 given in the following the mean is solved α_3	llowing table. Significantly d α_4	Test at the 95 ifferent from t α_5	5%	
	and the function An angle has be and the observe level of confide true angle value $\frac{\alpha_1}{45^{\circ}00'05''}$	then measured in d values are gence if the sam $45^{\circ}00'00''$. α_2 $45^{\circ}00'10''$	independently 5 fiven in the following the mean is stated as α_3 44°59′58″	llowing table. ignificantly d α_4 $45^{\circ}00'07''$	Test at the 95 ifferent from t α_5 $44^{\circ}59'54''$	i% he	
	and the function An angle has be and the observe level of confide true angle value α_1	then measured in d values are gence if the sam $45^{\circ}00'00''$. α_2 $45^{\circ}00'10''$	independently 5 fiven in the following the mean is stated as α_3 44°59′58″	llowing table. ignificantly d α_4 $45^{\circ}00'07''$	Test at the 95 ifferent from t α_5 $44^{\circ}59'54''$	i% he	
	and the function An angle has be and the observe level of confide true angle value α_1 $45^{\circ}00'05''$ The critical value	then measured in d values are gence if the sam $45^{\circ}00'00''$. α_2 $45^{\circ}00'10''$	independently 5 given in the following for the	llowing table. significantly d α_4 $45^{\circ}00'07''$ the testing is	Test at the 95 ifferent from t α_5 $44^{\circ}59'54''$	i% he	
	and the function An angle has be and the observe level of confide true angle value $\boxed{\alpha_1}$ $\underline{45^{\circ}00'05''}$ The critical value	then measured in d values are gence if the sam $45^{\circ}00'00''$. α_2 $45^{\circ}00'10''$ the that might	independently 5 given in the follopple mean is s α_3 $44^{\circ}59'58''$ be required in t	llowing table. significantly d α_4 $45^{\circ}00'07''$ the testing is α	Test at the 95 ifferent from the α_5 $44^{\circ}59'54''$ provided in the provided in the provid	;% he he	
6.	and the function An angle has be and the observe level of confide true angle value α_1 $45^{\circ}00'05''$ The critical value	then measured in d values are gence if the sam $45^{\circ}00'00''$. α_2 $45^{\circ}00'10''$	independently 5 given in the following for the	llowing table. significantly d α_4 $45^{\circ}00'07''$ the testing is	Test at the 95 ifferent from t α_5 $44^{\circ}59'54''$	i% he	
6.	and the function An angle has be and the observe level of confide true angle value α_1 $45^{\circ}00'05''$ The critical value following table: Degree of	then measured in d values are gence if the sam $45^{\circ}00'00''$. α_2 $45^{\circ}00'10''$ the that might	independently 5 given in the follopple mean is s α_3 $44^{\circ}59'58''$ be required in t	llowing table. significantly d α_4 $45^{\circ}00'07''$ the testing is α	Test at the 95 ifferent from the α_5 $44^{\circ}59'54''$ provided in the provided in the provid	;% he he	
6.	and the function An angle has be and the observe level of confide true angle value $\boxed{\alpha_1}$ $\underline{45^{\circ}00'05''}$ The critical value following table: Degree of freedom	ten measured in d values are g ence if the san $45^{\circ}00'00''$. α_2 $45^{\circ}00'10''$ ue that might	and ependently 5 given in the following in the following is set of the following in the following is set of the following is	llowing table. significantly d α_4 $45^{\circ}00'07''$ the testing is α $t_{0.975}$	Test at the 95 ifferent from t α_5 $44^{\circ}59'54''$ provided in t $t_{0.99}$;% he he	
6.	and the function An angle has be and the observe level of confide true angle value $\boxed{\frac{\alpha_1}{45^{\circ}00'05''}}$ The critical value following table: Degree of freedom 1	ten measured in d values are g ence if the san $45^{\circ}00'00''$. α_2 $45^{\circ}00'10''$ ue that might $t_{0.90}$ 3.08	independently 5 given in the following for the	llowing table. ignificantly d α_4 $45^{\circ}00'07''$ the testing is α $t_{0.975}$ 12.7	Test at the 95 ifferent from t α_5 $44^{\circ}59'54''$ provided in t $t_{0.99}$ 31.8	;% he he	
6.	and the function An angle has be and the observe level of confide true angle value $\boxed{\frac{\alpha_1}{45^{\circ}00'05''}}$ The critical value following table: Degree of freedom 1 2	ten measured in d values are g ence if the san $45^{\circ}00'00''$. α_2 $45^{\circ}00'10''$ ue that might $t_{0.90}$ 3.08 1.89	ndependently 5 given in the follopple mean is so α_3 $44^{\circ}59'58''$ be required in $t_{0.95}$ 6.31 2.92	llowing table. ignificantly d α_4 $45^{\circ}00'07''$ the testing is α $t_{0.975}$ 12.7 4.30	Test at the 95 ifferent from t α_5 $44^{\circ}59'54''$ provided in t $t_{0.99}$ 31.8 6.96	;% he he	

7.	A distance has been independently measured 4 times and its sample unit variance obtained from the adjustment $\hat{\sigma}_0^2$ is equal to 1.44 cm. If the appriori standard deviation σ_0 is 1.0 cm, conduct a statistic test to decide if the adjustment result is acceptable with a significance level of $\alpha = 5\%$. The critical values that might be required in the testing are provided in the following table: $\frac{\alpha 0.001 0.01 0.025 0.05 0.10}{\chi^2_{\alpha, \ \upsilon=3} 16.26 11.34 9.35 7.82 6.25}$ where $\chi^2_{\alpha, \ \upsilon=3}$ is determined by the equation $\alpha = \int_{\chi^2_{\alpha, \ \upsilon=3}}^{\infty} \chi^2(\mathbf{x}) d\mathbf{x}$ and υ is the degree of freedom.	10
8.	Given a geodetic network with 100 observations and 50 unknown points, use mathematical equations to explain which method of adjustment (parametric or conditional) you will recommend for this problem.	5
9.	Given the angle measurements of a triangle along with their standard deviations, conduct a conditional least squares adjustment. You are required to compute the following quantities: a) the estimated residuals b) the variance-covariance matrix of the estimated residuals c) the estimated observations d) the variance-covariance matrix of the estimated observations e) the estimated variance factor $\frac{\text{Angle} \text{Measurement} \text{Standard Deviation}}{\alpha 104^{\circ}38^{\circ}56^{\circ} 6.7^{\circ}}$ $\frac{\beta 43^{\circ}17^{\circ}35^{\circ} 9.9^{\circ}}{\gamma 32^{\circ}03^{\circ}14^{\circ}} 4.3^{\circ}}$	15

10.	 Conduct a parametric least squares adjustment to the same data given in Problem 9. You are required to compute the following quantities: a) the estimated parameters b) the variance-covariance matrix of the estimated parameters c) the estimated difference between α and β d) the variance of the estimated difference between α and β 	10	
	Total Marks:	100	