C-4 COORDINATE SYSTEMS \& MAP PROJECTIONS

March 2024

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted by the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note: This examination consists of 5 questions on 3 pages.
Marks

Q. No	Time: 3 hours	Value	Earned
1.	Answer the following: a) Compare NAD83(CSRS) with ITRF by listing two important differences between them (stating their full names). b) Compare CGVD28 with CGVD2013 by listing two differences between them (providing how it is realized, type of height system, reference surface for defining them, simple method of transforming from one to another). c) Explain two important differences between UT1 and UTC (stating their full names and the main properties distinguishing them). d) Briefly describe the term Tissot indicatrix using equivalent projection as an example. e) What is MTM (3TM) projection? Provide three important differences between UTM and MTM projections. f) Canada is planning to migrate from NAD83(CSRS) to the proposed NATRF2022 in parallel with the U.S. in 2025. Provide the full name of NATRF2022 and explain two important differences between it and NAD83 (CSRS). g) Explain spatial reference system and its reference frame (including how they are defined). h) Explain combined scale factor and how it is used. i) Explain meridian convergence and provide the expected magnitude of the meridian convergence of UTM projection at the UTM central meridian and the zone boundaries along the Equator. j) Briefly describe the term conformal map with regards to what it preserves and what it does not.	4 4 4 4 4 4 4 4 3 3 3 3	
2.	The map projection equations relating map projection coordinates (x, y) with the corresponding geographic coordinates (ϕ, λ) can be given as $x=R \lambda \quad y=R \sin \phi$ where R is the mean radius of the spherical earth. Determine (showing all of your mathematical derivations and substitutions of values) if the projection is equal area using two different approaches (the conclusions of the two approaches must be identical).	10	
3.	a) A 3 TM zone (with False Easting of $304,800 \mathrm{~m}$ and the scale factor of central meridian of 0.99990) and a UTM zone have the same central meridian. Calculate the UTM coordinates of the point whose 3TM map coordinates are $X=274,800.000 \mathrm{~m}, \mathrm{Y}=5,500,000.000 \mathrm{~m}$. b) Determine the longitude coordinates (along the Equator) of the points where the scale factor distortion is minimal in UTM Zone 10 N projection. What is that scale factor distortion?	5 5	

4.	On an UTM projection, point A is located on the eastern secant line while point B is located on a line where the scale factor is 1.0001 towards the eastern boundary. If the UTM plane bearing of line AB is $45^{\circ} 30^{\prime} 10.5^{\prime \prime}$, determine the grid bearing of the line (assuming the Gaussian mean radius of the earth in the region is 6,382,129.599 m).	20	
5.	a) Using well labelled sketches only, illustrate the Transverse Mercator (TM) and the Mercator projections in the Northern hemisphere; give one sketch for the TM projection and the other sketch for the Mercator projection. The sketches must show the projections of the Equator, Central Meridian, parallels and meridians with appropriate relationship between lines of the graticule clearly illustrated (with parallels and meridians at least six lines each). b) Describe how Tissot indicatrix will vary in sizes and shapes (specifying numerical values for parameters of the indicatrices, where possible) along the Equator and along the Central Meridians on the Transverse Mercator and Mercator projections.	16 8	
		100	

Some potentially useful formulae are given as follows:
$T-t=\frac{\left(y_{2}-y_{1}\right)\left(x_{2}+2 x_{1}\right)}{6 R_{m}^{2}}$
where $y_{i}=y_{i}^{U T M} ; x_{i}=x_{i}^{U T M}-x_{0} ; R_{m}$ is the Gaussian mean radius of the earth; and $x_{i}^{U T M}$ and $y_{i}^{U T M}$ are the UTM Easting and Northing coordinates respectively, for point i.

UTM average line scale factor, $\bar{k}_{\text {UTM }}=k_{0}\left[1+\frac{x_{u}^{2}}{6 R_{m}^{2}}\left(1+\frac{x_{u}^{2}}{36 R_{m}^{2}}\right)\right]$;
where $x_{i}=x_{i}^{U T M}-x_{0} ; \quad x_{u}^{2}=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}$
UTM point scale factor, $k_{U T M}=k_{0}\left[1+\frac{\Delta x^{2}}{2 R_{m}^{2}}\right]$, where $\Delta x=x^{U T M}-x_{0}$

$$
k_{U T M}=k_{0}\left[1+\frac{L^{2}}{2} \cos ^{2} \phi\right]
$$

k_{0} is scale factor of Central Meridian and x_{0} is the False easting value (or 500000 m) $L=\left(\lambda-\lambda_{0}\right)$ (in radians) for a given longitude λ; and λ_{0} is the longitude of the central meridian.
Grid convergence, $\gamma=L\left(1+\frac{L^{2}}{3}\left(1+3 \eta^{2}\right) \cos ^{2} \phi\right) \sin \phi$
where $\eta^{2}=\mathrm{e}^{\prime 2} \cos ^{2} \phi ; e^{\prime 2}=0.006739496780 ; L=\left(\lambda-\lambda_{0}\right)$ (in radians); λ_{0} is the longitude of the central meridian; and ϕ is the latitude of the given point.

Geodetic bearing: $\alpha=t+\gamma+(T-t)$

$$
S f=\frac{R_{m}}{R_{m}+H_{m}}
$$

Transformation Formulas:

$$
\begin{aligned}
& X_{(\text {target })}=k_{0(\text { target })} X_{G}+X_{0(\text { target })} \\
& Y_{(\text {target })}=k_{0(\text { target })} Y_{G} \\
& X_{G}=\frac{\left[X_{(\text {original })}-X_{0(\text { original })}\right]}{k_{0(\text { original })}} \\
& Y_{G}=\frac{Y_{(\text {original })}}{k_{0(\text { original })}}
\end{aligned}
$$

ITRF:

$$
\mathbf{r}(\mathrm{t})=\mathbf{r}_{0}+\dot{\mathbf{r}}\left(\mathrm{t}-\mathrm{t}_{0}\right)
$$

where \mathbf{r}_{0} and $\dot{\mathbf{r}}$ are the position and velocity respectively at \mathbf{t}_{0}.
Distortion Formulas:
Given: $X=f(\phi, \lambda) \quad Y=g(\phi, \lambda)$

$$
\begin{aligned}
& E=f_{\phi}^{2}+g_{\phi}^{2} \quad F=f_{\phi} f_{\lambda}+g_{\phi} g_{\lambda} \quad G=f_{\lambda}^{2}+g_{\lambda}^{2} \\
& m_{1}^{2}=\frac{f_{\phi}^{2}+g_{\phi}^{2}}{R^{2}} ; m_{2}^{2}=\frac{f_{\lambda}^{2}+g_{\lambda}^{2}}{R^{2} \cos ^{2} \phi} ; p=\frac{2\left(f_{\phi} f_{\lambda}+g_{\phi} g_{\lambda}\right)}{R^{2} \cos \phi} \\
& \frac{d \Sigma^{\prime}}{d \Sigma}=m_{1} \times m_{2} \sin A_{p}^{\prime} ; \quad f_{\phi}=\frac{\partial f(\phi, \lambda)}{\partial \phi} \\
& \sin A_{p}^{\prime}= \\
& \sqrt{\left(f_{\lambda} g_{\phi}-f_{\phi} g_{\lambda}\right)^{2}+\left(f_{\phi} f_{\lambda}+g_{\phi} g_{\lambda}\right)^{2}}
\end{aligned}
$$

Equivalency Condition: $f_{\lambda} g_{\phi}-f_{\phi} g_{\lambda}= \pm R^{2} \cos \phi$
Cauchy-Riemann Equations: $f_{\phi}=-\frac{1}{\cos \phi} g_{\lambda} ; \quad g_{\phi}=\frac{1}{\cos \phi} f_{\lambda}$

