Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to $\mathbf{2}$ more significant figures than warranted by the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note: This examination consists of 5 questions on 3 pages. Marks
Q. No Time: 3 hours Value Earned

1.	a) Right Ascension system is an inertial reference system. Explain why it is an inertial system, and discuss how its curvilinear coordinates are measured (including their units and zero points of the coordinates). b) Explain one important difference between the International Terrestrial Reference system and the Instantaneous terrestrial system. c) Describe the origin and coordinate axes of the coordinate system that is commonly used for satellite positioning at each specific instant of time the satellite is observed and explain four of the important parameters needed to convert coordinates in this coordinate system into geocentric coordinate system. d) Describe the parameters of 14-parameter transformation, and explain the purpose of the transformation. e) Explain the important differences between UT1 and UTC (stating their full names and what distinguishes them).	5 2 8 8 4 4
2.	On an UTM projection, point A is located on the eastern secant line while point B is located on a line where the scale factor is 1.0001 towards the eastern boundary. If the UTM plane bearing of line AB is $45^{\circ} 30^{\prime} 10.5^{\prime \prime}$, determine the grid bearing of the line (assuming the Gaussian mean radius of the earth in the region is 6,382,129.599 m).	20
3.	a) Discuss briefly the concept of Tissot indicatrix and describe the characteristics of Tissot indicatrices (with consideration for their sizes and shapes) as they will appear when drawn along the Equator and along the Central Meridian of each of the following map projections: Lambert Conformal Conic (one standard parallel), Mercator and UTM (identifying also the regions with perfect indicatrix in each case). b) Clearly explain why the plane bearing of a line $\mathrm{P}-\mathrm{Q}$ in a Stereographic double projection and the plane bearing of the same line in a UTM projection cannot necessarily be compared directly as a check on the correct orientation of the line. Suggest, with justification, what might be more appropriate bearings to compare. c) Describe the variation of grid convergence in conic projections and explain why you would use conic projections for mapping Canada land mass.	15 4 4 3
4.	The map projection equations relating map projection coordinates (x, y) with the corresponding geographic coordinates (ϕ, λ) can be given as $x=R \lambda \quad y=R \sin \phi$ where R is the mean radius of the spherical earth. Determine (showing all of your mathematical derivations and substitutions of values) if the projection is equal area using two different approaches (the conclusions of the two approaches must be identical).	10

Some potentially useful formulae are given as follows:
$T-t=\frac{\left(y_{2}-y_{1}\right)\left(x_{2}+2 x_{1}\right)}{6 R_{m}^{2}}$
where $y_{i}=y_{i}^{U T M} ; x_{i}=x_{i}^{\text {UTM }}-x_{0} ; R_{m}$ is the Gaussian mean radius of the earth; and $x_{i}^{U T M}$ and $y_{i}^{U T M}$ are the UTM Easting and Northing coordinates respectively, for point i.

UTM average line scale factor, $\bar{k}_{U T M}=k_{0}\left[1+\frac{x_{u}^{2}}{6 R_{m}^{2}}\left(1+\frac{x_{u}^{2}}{36 R_{m}^{2}}\right)\right]$;
where $x_{i}=x_{i}^{U T M}-x_{0} ; \quad x_{u}^{2}=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}$
UTM point scale factor, $k_{U T M}=k_{0}\left[1+\frac{\Delta x^{2}}{2 R_{m}^{2}}\right]$, where $\Delta x=x^{U T M}-x_{0}$

$$
k_{U T M}=k_{0}\left[1+\frac{L^{2}}{2} \cos ^{2} \phi\right]
$$

k_{0} is scale factor of Central Meridian and x_{0} is the False easting value (or 500000 m) $L=\left(\lambda-\lambda_{0}\right)$ (in radians) for a given longitude λ; and λ_{0} is the longitude of the central meridian.
Grid convergence, $\gamma=L\left(1+\frac{L^{2}}{3}\left(1+3 \eta^{2}\right) \cos ^{2} \phi\right) \sin \phi$
where $\eta^{2}=\mathrm{e}^{\prime 2} \cos ^{2} \phi ; e^{\prime 2}=0.006739496780 ; L=\left(\lambda-\lambda_{0}\right)$ (in radians); λ_{0} is the longitude of the central meridian; and ϕ is the latitude of the given point.

Geodetic bearing: $\alpha=t+\gamma+(T-t)$
$S f=\frac{R_{m}}{R_{m}+H_{m}}$

Transformation Formulas:

$$
X_{(t \text { arget })}=k_{0(t \text { arget })} X_{G}+X_{0(\text { target })}
$$

$$
\begin{aligned}
& Y_{(\text {target })}=k_{0(\text { target })} Y_{G} \\
& X_{G}=\frac{\left[X_{(\text {original })}-X_{0(\text { original })}\right]}{k_{0(\text { original })}} \\
& Y_{G}=\frac{Y_{(\text {original })}}{k_{0(\text { original })}}
\end{aligned}
$$

ITRF:

$$
\mathbf{r}(\mathrm{t})=\mathbf{r}_{0}+\dot{\mathbf{r}}\left(\mathrm{t}-\mathrm{t}_{0}\right)
$$

where \mathbf{r}_{0} and $\dot{\mathbf{r}}$ are the position and velocity respectively at \mathbf{t}_{0}.
Distortion Formulas:
Given: $X=f(\phi, \lambda) \quad Y=g(\phi, \lambda)$
$m_{1}^{2}=\frac{f_{\phi}^{2}+g_{\phi}^{2}}{R^{2}} ; m_{2}^{2}=\frac{f_{\lambda}^{2}+g_{\lambda}^{2}}{R^{2} \cos ^{2} \phi} ; p=\frac{2\left(f_{\phi} f_{\lambda}+g_{\phi} g_{\lambda}\right)}{R^{2} \cos \phi}$
$\frac{d \Sigma^{\prime}}{d \Sigma}=m_{1} \times m_{2} \sin A_{p}^{\prime} ;$
$\sin A_{p}^{\prime}=\frac{f_{\lambda} g_{\phi}-f_{\phi} g_{\lambda}}{\sqrt{\left(f_{\lambda} g_{\phi}-f_{\phi} g_{\lambda}\right)^{2}+\left(f_{\phi} f_{\lambda}+g_{\phi} g_{\lambda}\right)^{2}}}$
Equivalency Condition: $f_{\lambda} g_{\phi}-f_{\phi} g_{\lambda}= \pm R^{2} \cos \phi$
Cauchy-Riemann Equations: $f_{\phi}=-\frac{1}{\cos \phi} g_{\lambda} ; \quad g_{\phi}=\frac{1}{\cos \phi} f_{\lambda}$

