CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C2 - LEAST SQUARES & DATA ANALYSIS

October 2023

Note:	e: This examination consists of 10 questions on 3 pages.		
<u>Q. No</u>	Time: 3 hours	<u>Value</u>	Earned
1.	 Briefly explain the following terms: a) Precision b) Internal reliability c) Type II error in statistic testing d) Root mean square error e) Correlation coefficient 	10	
2.	Given a leveling network below where A and B are known points, h_1 and h_2 are two height difference measurements with standard deviation of σ_1 and σ_2 , respectively and $\sigma_1 = 1.5 \sigma_2$. Determine the value of σ_1 and σ_2 so that the standard deviation of the height solution at P using least squares adjustment is equal to 2cm. $ \frac{A}{P} = \frac{h_1}{B} $	10	
3.	Given the variance-covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $C_{x} = \begin{bmatrix} 0.0484 & 0.0246\\ 0.0246 & 0.0196 \end{bmatrix} m^{2}$	10	
4.	 Given the following mathematical model f(l,x) = 0 C_l C_x where f is the vector of mathematical models, x is the vector of unknown parameters and C_x is its variance matrix, l is the vector of observations and C_l is its variance matrix. a) Linearize the mathematical model b) Formulate the variation function c) Derive the least squares normal equation 	15	

5.	Given the variance-covariance matrix of the measurement vector $\ell = \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix}$: $C_{\ell} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$ and the function $\mathbf{x} = \ell_1 + \ell_2$, determine $C_{\mathbf{x}}$.					5
	An angle has been measured independently 5 times with the same precision and the observed values are given in the following table. Test at the 95% level of confidence if the sample mean is significantly different from the true angle value $45^{\circ}00'00''$.					
	α_1	α_2	α_3	α_4	α_5	
	45°00'05"	45°00'10"	44°59'58"	45°00'07"	44°59'54"	
6.	following table:	ble: t_{α} $t_{0.90}$ $t_{0.95}$ $t_{0.975}$ $t_{0.99}$				
		t _{0.90}	10.95	¹ 0.975	t _{0.99}	
	freedom 1	t _{0.90} 3.08	6.31	12.7	t _{0.99} 31.8	
	freedom					
	freedom 1	3.08	6.31	12.7	31.8	
	freedom 1 2	3.08 1.89	6.31 2.92	12.7 4.30	31.8 6.96	
	freedom 1 2 3	3.08 1.89 1.64	6.31 2.92 2.35	12.7 4.30 3.18	31.8 6.96 4.54	

A distance has been independently measured 4 times and its sample unit variance obtained from the adjustment $\hat{\sigma}_0^2$ is equal to 1.44 cm. If the apriori standard deviation σ_0 is 1.0 cm, conduct a statistic test to decide if the adjustment result is acceptable with a significance level of $\alpha = 5\%$. The critical values that might be required in the testing are provided in the following table:

8.

α	0.001	0.01	0.025	0.05	0.10
$\chi^2_{\alpha, \upsilon=3}$	16.26	11.34	9.35	7.82	6.25

where $\chi^2_{\alpha, \ \upsilon=3}$ is determined by the equation $\alpha = \int_{\chi^2_{\alpha, \ \upsilon=3}}^{\infty} \chi^2(x) dx$ and υ is the degree of freedom.

Given the angle measurements of a triangle along with their standard deviations, conduct a conditional least squares adjustment. You are required to compute the following quantities:

- a) the estimated residuals
- b) the variance-covariance matrix of the estimated residuals
- c) the estimated observations
- d) the variance-covariance matrix of the estimated observations
- e) the estimated variance factor

		Angle	Maagunamant	Standard Deviation			
0		Angle	Measurement	Standard Deviation	1.5		
9.		α	104°38'56"	6.7"	15		
		β	43°17'35"	9.9"			
		γ	32°03'14"	4.3"			
	βγ						
10.	 Conduct a parametric least squares adjustment to the same data given in Problem 9. You are required to compute the following quantities: a) the estimated parameters b) the variance-covariance matrix of the estimated parameters c) the estimated difference between α and β d) the variance of the estimated difference between α and β 				10		
				Total Mar	ks: 100		

10