Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to $\mathbf{2}$ more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note: This examination consists of 9 questions on $\mathbf{3}$ pages.
Marks
O. No

Time: 3 hours
Value Earned

1.	Explain the difference between the following: a) Precision and Accuracy b) Type I and Type II errors in Statistical Testing c) Internal and External Reliability d) Statistically Independent and Uncorrelated	10
2.	Sides a and b are measured once each as follows: $\begin{array}{ll} \ell & =\left[\begin{array}{l} a \\ b \end{array}\right]=\left[\begin{array}{l} 100 \\ 200 \end{array}\right] \mathrm{m} \\ C_{\ell}=\left[\begin{array}{ll} 1 & 0 \\ 0 & 4 \end{array}\right] \mathrm{cm}^{2} & C \end{array}$ a) Estimate the areas of triangle ABD and the circle shown inside the rectangle. b) Estimate the standard deviations of the quantities computed in Part a). c) Estimate the correlation between the triangle and the circle estimates. d) Discuss the nature of the correlations computed in Part c).	15
3.	Consider that the shape of an object is defined by the following equation: $z_{i}=a x_{i}^{3}+b \sin \left(y_{i}\right)$ where z_{i}, x_{i}, y_{i} are observations with standard deviations $\sigma_{z_{i}}, \sigma_{x_{i}}, \sigma_{y_{i}}$, and a and b are parameters to be estimated. Assume $\mathrm{i}=1,2,3$. Write the linearized form of this model and derive the required matrices and vectors.	10
4.	Given the variance-covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $\mathrm{C}_{\mathrm{x}}=\left[\begin{array}{ll} 0.000532 & 0.000602 \\ 0.000602 & 0.000838 \end{array}\right] \mathrm{m}^{2}$	10

