CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C2 - LEAST SQUARES & DATA ANALYSIS

March 2023

Note:	This examination consists of 9 questions on 3 pages.	Marks	
<u>Q. No</u>	Time: 3 hours	Value	Earned
1.	 Define and explain the following: a) Difference between precision and accuracy b) Difference between root mean square error and standard deviation c) Difference between covariance and correlation coefficient d) Internal and external reliability e) Type I and type II errors in statistical testing 	15	
2.	Given the variance-covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $C_{x} = \begin{bmatrix} 0.000532 & 0.000602\\ 0.000602 & 0.000838 \end{bmatrix} m^{2}$	10	
3.	Given a leveling network below where A and B are known points, h_1 and h_2 are two height difference measurements with standard deviation of σ_1 and σ_2 , respectively and $\sigma_1 = 2 \sigma_2$. Determine the value of σ_1 and σ_2 so that the standard deviation of the height solution at P using least squares adjustment is equal to 2cm. $ \frac{h_1}{A} \xrightarrow{h_2} B $	10	
4.	Sides <i>a</i> and <i>b</i> are measured once each as follows: $I = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 10 \\ 20 \end{bmatrix} \text{m}$ $C_{I} = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \text{cm}^{2}$ a) A A b) B a) Estimate the areas of triangle ABD and the circle shown inside the rectangle. b) Estimate the standard deviations of the quantities computed in Part (a). c) Estimate the correlation between the triangle and the circle estimates. d) Discuss the nature of the correlations computed in Part (c).	15	

lev tru	el of confide e angle value	ence if the sam $45^{\circ}00'00''$.	iple mean is s	ignificantly di	ifferent from t	the
	$\alpha_{_1}$	α_2	α_3	$lpha_4$	α_{5}	
	45°00 ′ 05″	45°00 ′ 10″	44°59 ′ 58″	45°00 ′ 07″	44°59 ′ 54″	
		t _α				
			t	α		10
	Degree of	t _{0.90}	t _{0.95}	α t _{0.975}	t _{0.99}	
	Degree of freedom	t _{0.90}	t t _{0.95}	α t _{0.975}	t _{0.99}	
	Degree of freedom 1	t _{0.90} 3.08	tt.	α t _{0.975} 12.7	t _{0.99} 31.8	
	Degree of freedom 1 2	t _{0.90} 3.08 1.89	t t _{0.95} 6.31 2.92	α t _{0.975} 12.7 4.30	t _{0.99} 31.8 6.96	
	Degree of freedom 1 2 3	t _{0.90} 3.08 1.89 1.64	t t _{0.95} 6.31 2.92 2.35	α t _{0.975} 12.7 4.30 3.18	t _{0.99} 31.8 6.96 4.54	
	Degree of freedom 1 2 3 4	t _{0.90} 3.08 1.89 1.64 1.53	t t _{0.95} 6.31 2.92 2.35 2.13	α t _{0.975} 12.7 4.30 3.18 2.78	t _{0.99} 31.8 6.96 4.54 3.75	