Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to $\mathbf{2}$ more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note: This examination consists of 10 questions on 2 pages.
Marks

Q. No	Time: 3 hours	Value	Earned
1.	(a) Find $\sum_{n=1}^{2024} \frac{1}{n^{2}+3 n+}$ Hint: use partial fractions and telescoping st (b) Find the limit of the following geometric	10	
2.	If you were to make a nonstop flight from the city of Dayton, Ohio (39 to Tokyo $\left(35^{\circ} 39^{\prime} N, 139^{\circ} 45^{\prime} E\right)$ by the shortest route, in which directios vou start vaur Aliaht?	10	
3.	(a) Find the eigenvalues of $A=\left[\begin{array}{cc} 3 & -1 \\ 2 & 0 \end{array}\right]$ and find one eigenvector for each eigenvalue. (b) Find $a, b, c, d, \lambda_{1}, \lambda_{2}$ in	10	
4.	(a) An orthogonal matrix is one whose column vectors form ar basis. The vectors of an orthonormal basis all have length 1 an orthogonal to each other. Find a, b for the orthogonal matrix $\left[\begin{array}{ccc} 0.5 & 0.4 & x \\ 0.7 & a & y \\ \sqrt{0.26} & b & z \end{array}\right]$	10	
5.	The electric power (in W) produced by a certain source is giv $P=\frac{144 r}{(r+0.6)^{2}}$ where r is the resistance in ohms in the circuit. For what val	10	

$\left.\begin{array}{|c|l|l|l|}\hline & \begin{array}{l}\text { (a) The Arcadium arcade in Lynchburg, Tennessee uses } 3 \text { diff } \\ \text { (okens for their game machines. For } \$ 20 \text { you can purchase al } \\ \text { lowing mixtures of tokens: } 14 \text { gold, } 20 \text { silver, and } 24 \text { bronze; } \\ 15 \text { silver, and } 19 \text { bronze; OR, 30 gold, } 5 \text { silver, and } 13 \text { bronze. } \\ \text { monetary value of the silver token? } \\ \text { (b) Use Cramer's Rule to find } y \text { in terms of } a \text { and } b \text { when you }\end{array} & 10\end{array}\right\}$

