

S5 – Remote Sensing

Content

• This document is a high-level curriculum design which captures the key principles, competencies, learning outcomes and syllabus items proposed for the updated curriculum specific to S5 – "Remote Sensing".

- Establish the foundational knowledge in remote sensing required to be a surveyor
- Support subsequent learning

Key Principles Motivation	Syllabus Items	Competencies/Learning Outcomes
Introduction to Remote Sensing Surveyors need to understand remote sensing fundamentals as remote sensing is a frequently used tool for data collection	 The Electromagnetic Spectrum Characteristics of electromagnetic waves Atmospheric windows Scattering Reflection Absorption/emission Data Models Vector Data Raster Data IFOV and FOV Vector vs Raster 	 Competencies Describe sensors, data collection processes and data manipulation to support decision making for survey projects Identify benefits and limitations of remotely sensed data Describe and explain characteristics of electromagnetic waves, and interaction with the atmosphere and objects on ground Describe the fundamental principles of remote sensing and review their application to surveying the advantages and disadvantages of the two data models Describe and explain the differences and concepts of vector and raster data Learning Outcomes Compare different type of sensors data. Explain fundamental concepts of remote sensing and data models Choose appropriate raster data for survey projects

- Establish the foundational knowledge in remote sensing) required to be a surveyor
- Support subsequent learning

Key Principles	Motivation	Syllabus Items	Competencies/Learning Outcomes
Remote Sensing Platforms	Remote sensing technology is used by surveyors to do their work; surveyors need to be familiar with the characteristics of available remote sensing platforms	 Advantages, limitations, and applications of remotely sensed data Ground based platforms (Handheld devices, Vehicles, tripods, and towers) Use of ground-based platform Setting up ground-based platforms Advantages and disadvantages of all platforms Airborne platforms (RPAS, and Aeroplanes) Mission planning Calculating flight altitude Calculating number of flight lines Calculating platform speed Calculating mage scale Space borne platforms (Satellites) Law of gravitation Circular motion and satellites Kepler's laws Satellite orbit classification 	 Competencies Describe and explain characteristics and theory of remote sensing platforms Recognize the appropriate remote sensing solution for the survey Describe and explain the fundamentals of satellite motion Learning Outcomes Review appropriate platform and sensor to capture relevant data to specific projects Identify the data requirements for the specific project Practice airborne mission planning

- Establish the foundational knowledge in remote sensing required to be a surveyor
- Support subsequent learning

Key Principles	Motivation	Syllabus Items	Competencies/Learning Outcomes
Passive Remote Sensing: Sensors	Remote Sensing technology is used by surveyors to do their work; surveyors must understand basic technology and characteristics of passive imaging sensors	 Cameras and Scanners Characteristics, geometry, benefits, and limitations of a digital image Single and stereo image mode Image Resolution Spatial resolution Spectral resolution Radiometric resolution Temporal resolution 	 Competencies Describe, explain, and illustrate the geometry and characteristics of camera and scanner sensors. Describe the various types of resolutions and demonstrate their role in data quality captured by cameras and scanners Learning Outcomes Identify and review the right sensor/data to meet the survey requirements Demonstrate the role of resolution in data quality captured by cameras and scanners

- Establish the foundational knowledge in remote sensing) required to be a surveyor
- Support subsequent learning

Key Principles	Motivation	Syllabus Items	Competencies/Learning Outcomes
Passive Remote Sensing: Image Processing and Manipulation	Surveyors need to understand digital image processing and manipulation to understand what they are looking at. Used for 3D spatial data collection and 2/3D object reconstruction and mapping	 Image Processing Atmospheric corrections Geometric corrections Radiometric corrections Derivations of 3D object metric information from imagery Measurement and correction of image coordinates Image Enhancement Contrast stretch Histogram equalization Digital filtering Band Composite Band combinations of satellite imageries and their applications Image Manipulation Image rectification DEM and orthoimage generation Coordinate transformations Mathematical models for sensor and for sensor to object relationships Statistical Characteristics Resampling Image matching Close range photogrammetry 	 Competencies Describe concepts, limitations and benefits of basic image processing, enhancement, and data manipulation techniques Describe the mathematical models relating sensor space to object space Describe and apply DEM and orthoimage generation Learning Outcomes Demonstrate basic image corrections, image enhancement, and band composites apply the mathematical models relating sensor space to object space Test calculations to determine print scale, and size Apply DEM and orthoimage generation

 Digital photogrammetry, epipolar geometry, image matching and 3D reconstruction 	

- Establish the foundational knowledge In remote sensing required to be a surveyor
- Support subsequent learning

Key Principles	Motivation	Syllabus Items	Critical Thinking (must be able to think through) Competency/Learning Outcomes
Passive Remote Sensing: Image Analysis and Interpretation	Surveyors need to understand the outcome of image classification to for product preparation	 Visual Interpretation Defining objectives Selecting data Interpretation key Digital Interpretation Unsupervised image classification Supervised image classification Object oriented image classification 	 Competencies Describe and discuss image analysis and interpretation concepts and techniques. Identify appropriate data Learning Outcomes Implement and compare visual and digital imager interpretation Apply and compare the different types of image classification Identify, describe, and apply common image analyses and interpretation techniques

- Establish the foundational knowledge in remote sensing required to be a surveyor
- Support subsequent learning

Key Principles	Motivation	Syllabus Items	Competencies/Learning Outcomes
Passive Remote Sensing: Applications	Surveyors use remote sensing images and need to be able to leverage remote sensing data for various applications, including base mapping	 Passive Remote Sensing Applications Vegetation analysis and mapping using NDVI (Normalized Difference Vegetation Index) and other vegetation indices Land-use/Land-cover applications including built up area mapping, and surface water mapping Forest fire detection and burn area mapping Temporal analysis for change detection Principal Component Analysis (PCA) Topographic mapping 	 Competencies Identify and describe common remote sensing data applications Identify, describe, and apply common applications of passive remote sensed data Identify, differentiate, and apply temporal image analysis methods Learning Outcomes Apply and compare the various vegetation indices Implement and analyse land use/land cover mapping types

- Establish the foundational knowledge in remote sensing required to be a surveyor
- Support subsequent learning

Key Principles	Motivation	Syllabus Items	Competencies/Learning Outcomes
Active Remote Sensing Sensors and Applications: LIDAR	Active remote sensing sensors like LIDAR are becoming increasingly popular in geomatics and surveying industry. Surveyors need to know these technologies and their application LIDAR is used by surveyors for a range of products	 Fundamentals of LIDAR technology Components of LIDAR Systems Determination of 3D Coordinates from LIDAR Systems Calibration Processing of point cloud data 3D point cloud co-registration Ground based LIDAR Systems (Terrestrial Laser Scanners–TLS) technology Mission planning and data acquisition using TLS Applications of TLS (Scanning of buildings and structures) Airborne LIDAR Systems Airborne LIDAR Systems Airborne LIDAR Technology (GNSS, IMU, Laser Scanner) Mission planning and flying operation Geolocation Process Sources of Data Errors Applications of Airborne LIDAR systems (DEM, DSM, volume calculation, view shed and watershed area determination) Spaceborne LIDAR System ICESAT-2 GEDI LIDAR Applications 	 Competencies Identify and describe common LIDAR systems, including their benefits and limitations Describe and explain, LIDAR technology, and its applications Describe and explain various coordinates systems involved and how the final object coordinates are determined from the LIDAR system Describe beam reflection mechanisms Identify and describe the different laser range finding methods Learning Outcomes Review and Interpret point cloud data and calculate coordinate precision Process point cloud data prepare mission plan and data acquisition for a project Generate a DTM for a project Calculate open pit volumes for a project

 Use in Lat Generation Open Pit Transport 	Surveying of Digital Terrain Models (DTMs) olume Calculations tion Expansion
---	---

- Establish the foundational knowledge in remote sensing required to be a surveyor
- Support subsequent learning

Key Principles	Motivation	Syllabus Items	Competencies/Learning Outcomes
Active Remote Sensing Sensors and Applications: RADAR	RADAR remote sensing sensors offer a unique advantage of almost all weather, and day/night data acquisition. Surveyors need to know these technologies and their applications, for example in DTM generation using InSAR Ground Penetrating Radar (GPR) Increasingly being used for detecting and mapping of 3D underground utility infrastructure	 RADAR Technology RADAR wavelengths (Bands) Polarization Interference Advantages and Limitations of RADAR Side looking RADAR (SLAR) Viewing geometry Spatial resolution (Slant range, cross track, and along track resolution) Image characteristics (Shadow, foreshortening, layover effect, and speckle noise) Synthetic Aperture RADAR (SAR) SAR Technology SAR Applications SAR Interferometry (InSAR) Physical principles, components of GPR Wavelengths/frequencies, penetration, and resolutions Sources of error Airwaves Line scans Grid scans Data understanding and interpretation Dielectric constant of materials 	 Competencies Identify and explain basic principles of active imaging, including advantages and limitations Describe and explain the fundamentals and impact of image geometry on image appearance Describe the fundamentals of different sources of RADAR data Describe the different characteristics of optical and RADAR data Describe, explain, and demonstrate RADAR (SAR and SLAR) technology, and its applications Describe the GPR fundamentals Explain the localization of objects Learning Outcomes List advantages and limitations of RADAR Technology as well as which projects this would be most beneficial Inspect and interpret detected objects List GPR applications Apply and practice GPR surveys Review and interpret GPR images

 Construction of 3D images/tomographic images
 Object detection and locations
 GPR data interpretation
• GPR applications
Interpretation of RADAR Imagery
Applications
o Agriculture
o Forestry
o Mining

- Establish the foundational knowledge in remote sensing required to be a surveyor
- Support subsequent learning

Key Principles	Motivation	Syllabus Items	Competencies/Learning Outcomes
Active Remote Sensing	Hydrography provides	• Principles and Processes of Hydrographic Surveying and	Competencies
Sensors: SONAR	up-to-date nautical	SONAR Technology	
Technology and	charts for safe navigation	 Sound waves and their characteristics 	• Describe and explain the principles and processes of hydrographic surveying
Hydrography	and the protection of the	 Refraction of sound waves 	• Describe and explain the concepts of sound wave propagation, acoustic
	marine environment. It	 Propagation of sound waves in water 	system parameters, the physical properties of water and its impact on the
	focuses on the	 Tidal fundamentals, measurements, streams, and 	speed of sound
	measurements of	currents	 Describe and explain hydro-acoustics concepts
	physical characteristics of	 Non-tidal water variations 	 Describe and explain tidal fundamentals
	water bodies and	 Vertical Datum, elevation, and soundings, MLW, 	 Describe and explain the ellipsoid-based water depth determination
	adjoining coastal areas	MLLW, MHW	 Describe and explain the concepts of tides' generation, how they are measured and parameters affecting non-tidal water level variations
	Surveys that involve	SONAR Systems	• Describe and explain of sonar sensors, single beam and multibeam echo
	water bodies and	 Single Beam Echo Sounders (SBES) 	sounders and relevant calibration processes
	offshore require	 Narrow Beam and Wide Beam Sounders 	 Describe, explain side scan sonars technology, and its applications
	knowledge of SONAR,	 Multibeam Echo Sounders (MBES) 	 Describe and explain ellipsoidally referenced hydrographic surveys
	which is actively used in	 Side Scan Sonars (SSS) 	
	bathymetric surveys	 Sonar Data Processing 	Learning Outcomes
		Elements of Hydrographic Surveys	• Apply the principles of horizontal and vertical positioning, datums, methods
		 SONAR survey requirements 	used for depth measurements, heave compensation systems and principles of
		 Mission planning 	motion sensors
		 Surveys in support of river crossings and engineering 	Plan and manage hydrographic surveys and evaluate hydrographic data
		 Surveys in support of port management and coastal 	Calculate water depths
		engineering	

	 Ellipsoidally referenced hydrographic surveys Nautical charting and marine navigation SONAR data applications Data quality, errors, uncertainty Mapping 	

- Establish the foundational knowledge in remote sensing required to be a surveyor
- Support subsequent learning

Key Principles	Motivation	Syllabus Items	Competencies/Learning Outcomes
Information from optical and range data: -Photogrammetric Computer Vision	 Used for 3D spatial data collection and 2/3D object reconstruction and mapping Used in UAV and mobile mapping applications 	 Camera calibration, measurement, and correction of image coordinates Coordinate transformations Mathematical models for sensor and for sensor to object relationships collinearity, epipolar geometry, coplanarity, space resection, space intersection Sensor poses estimation, photogrammetric bundle block adjustments, structure from motion, visual odometry 	 Competencies Describe and explain the use of optical and range data for 3D reconstructions and modelling Identify, describe, and apply the proper mathematical models Identify and apply the proper approach for sensor pose estimation Explain geometric and mathematical photogrammetric principles and the theory and procedures of photogrammetric orientations. Explain and apply the principles and mathematical models for DEM and orthoimage generation Explain and apply photogrammetric planning and identify control requirements. Identify and apply the use of photogrammetric principles for various applications Identify and explain the different camera calibration procedures Learning Outcomes Explain the concepts and uses of optical data for spatial data collection (3D position) and the 2/3D object reconstruction from optical and range measurements. Explain and apply the mathematical photogrammetric theory and procedures of photogrammetric principles for a photogrammetric principles and range applications). Examine the camera calibration parameters required for a photogrammetric project Calculate approximate coordinate precision from aerial imagery

- Establish the foundational knowledge in remote sensing required to be a surveyor
- Support subsequent learning

Key Principles	Motivation	Syllabus Items	Competencies/Learning Outcomes
Mobile Mapping Systems Applications	Used for 3D spatial data collection and 2/3D object reconstruction and mapping Used in UAV and mobile mapping applications	 Mobile mapping, Direct georeferencing, Simultaneous Localization and Mapping (SLAM) 3D reconstruction from optical and range Image rectification DEM and orthoimage generation Close range photogrammetry, Vanishing geometry Mobile mapping systems Navigation and mapping sensors Reference coordinate systems and transformations of navigation and mapping sensors used for mobile mapping systems Sensor co-registration including bore sighting and lever arm calibration 	 Competencies Describe and explain the mobile mapping systems and their role and uses in geomatics. Describe and explain calibration of mobile mapping systems Explain and apply the navigation and mapping sensors used on-board mobile platforms. Identify and describe the coordinate systems and properly apply the coordinate transformations for mobile mapping applications. Learning Outcomes Apply and analyze methods for platform and sensor localization (position and orientation) Apply and analyze methods and computational algorithms for processing data captured by mobile platforms. Design, plan and evaluate mobile mapping missions