

S2 – Modélisation et analyse

Contenu

Ce document est une conception de programme de haut niveau qui regroupe les principes clés, les compétences, les résultats d'apprentissage et les éléments du programme d'études proposés pour le programme mis à jour pour S2 - Modélisation et analyse.

S2 : MODÉLISATION ET ANALYSE

OBJECTIFS D'APPRENTISSAGE

- Établir les connaissances fondamentales de modélisation et d'analyse requises en arpentage

Principe clé	Motivation	Éléments du programme d'études	Compétences et résultats d'apprentissage
MODÉLISATION ET LE PRÉDICTION de la po	Les arpenteurs-géomètres doivent savoir comment utiliser la modélisation et la prédiction pour tirer des informations utiles des mesures	 Éléments fondamentaux de l'analyse des données spatiales ; visualiser, explorer puis modéliser Modèles conditionnels, paramétriques et généraux Modèles d'ajustement des moindres carrés pour différentes observations géomatiques (distance, azimut, direction, etc.) 	 Compétences Décrire les différents types de modèles, leurs caractéristiques et comment les dériver Justifier le choix des modèles de mesures topographiques
		Modélisation de séries temporelles	Résultats d'apprentissage :
		Modèle de prédiction simple en tant que composant du filtrage de Kalman	Formuler des modèles pour les représentations cartographiques plane ellipsoïdales, sphériques et conformes de la Terre
		Modèle d'ajustement séquentiel	
		 Manipulation des équations normales dans les ajustements 	 Dériver des modèles d'ajustement des moindres carrés (conditionnels paramétriques et généraux) pour les problèmes de géomatique, tels que les réseaux de nivellement, de traversée, de triangulation et de trilatération
			 Transformer des coordonnées du système local en système de coordonnées du monde réel, tel qu'UTM, et utiliser la transformation comme modèle de prédiction
			 Modélisez des séries de données temporelles et spatiales pour une analyse plus approfondie, par ex. pour l'analyse des déformations, etc

S2 : MODÉLISATION ET ANALYSE

OBJECTIFS D'APPRENTISSAGE

- Établir les connaissances fondamentales de modélisation et d'analyse requises en arpentage
- Soutenir l'apprentissage ultérieur

Les principes cies	iviotivation	Elements du programme d'études	Competences et resultats à apprentissage
Les principes clés ESTIMATION ET APPROXIMATION	Motivation Les arpenteurs-géomètres doivent être capables d'évaluer quantitativement des paramètres ou des fonctions à partir de mesures comportant une composante aléatoire	 Éléments du programme d'études Système d'équations surdéterminé Problèmes de référence, y compris la transformation de référence Principe du calcul d'ajustement Principes et propriétés de l'estimation des moindres carrés Approximation des moindres carrés Calcul appliqué pour linéariser des systèmes d'équations non linéaires Manipulation matricielle impliquée dans l'estimation et l'approximation 	Compétences Décrire les principes, les propriétés et les étapes d'estimation des moindres carrés, de la formulation du modèle à l'étape de la solution Construire des courbes ou de fonctions mathématiques qui s'adaptent le mieux à une série de points de données Évaluer les impacts de différentes variables (humaines, instrumentales, conditions atmosphériques, instabilité du sol, etc.) sur les mesures relatives à l'étalonnage des équipements, etc. Effectuer une pré-analyse et appliquer une analyse statistique. Résultats d'apprentissage:
			Appliquer la théorie des matrices dans les problèmes d'estimation et d'approximation
			 Appliquer le principe d'ajustement des moindres carrés pour résoudre des problèmes de géomatique (calculer le vecteur de paramètres et sa

matrice de variance-covariance), tels que les réseaux de nivellement, de cheminement, de triangulation et de trilatération
Effectuez des ajustements des moindres carrés partitionnés pour éliminer les paramètres nuisibles des mesures
 Appliquer une approche de propagation d'erreur pour déterminer la qualité des fonctions approximées et des paramètres estimés
Résoudre les problèmes d'ajustement de réseaux surcontraints et libres (y compris les contraintes internes
 Analyser les erreurs systématiques et aléatoires dans les mesures et les équipements, et leurs impacts sur les paramètres estimés, tels que l'étalonnage des équipements
 Appliquer l'analyse de régression aux problèmes de géomatique, tels que l'étalonnage de l'équipement et les séries chronologiques

S2 : MODÉLISATION ET AN. OBJECTIFS D'APPRENTISSA			
Établir les connaissSoutenir l'apprenti	sances fondamentales de modélisation e issage ultérieur	t d'analyse requises en arpentage	
Les principes clés	Motivation	Éléments du programme d'études	Compétences et résultats d'apprentissage
FILTRAGE	Les géomètres doivent être en mesure de filtrer les variations indésirables du signal pour tenir compte des variations majeures du signal	 Analyse spectrale de séries temporelles Relation entre les ajustements séquentiels des moindres carrés et le filtrage 	Compétences Effectuer une analyse spectrale Concevoir et utiliser divers filtres

	 Relation entre l'analyse spectrale des séries temporelles et le filtrage Méthodes de conception de filtres à réponse impulsionnelle finie (FIR) dans le traitement d'images D'autres algorithmes de filtrage, tels que ceux utilisés dans les problèmes de positionnement, par ex. Filtrage de Kalman 	 Décrire la relation entre l'analyse spectrale et le filtrage Décrire la relation entre l'ajustement séquentiel des moindres carrés et le filtrage Décrire les principes d'un filtre de Kalman Résultats d'apprentissage :
		 Effectuer une analyse spectrale d'un signal Identifier les composantes spectrales d'un signal à filtrer/retenir Concevoir et utiliser divers filtres FIR (passe-bas, passe-haut, passe-bande, dérivé, etc.) pour un problème

S2 : MODÉLISATION ET ANALYSE OBJECTIFS D'APPRENTISSAGE			
Les principes clés	Motivation	Éléments du programme d'études	Compétences et résultats d'apprentissage
ANALYSE DES DONNÉES STATISTIQUES	Les arpenteurs-géomètres doivent être capables d'organiser, d'interpréter et d'évaluer les mesures d'arpentage et les paramètres basés sur ces mesures	 Loi de propagation des erreurs et pré-analyse des réseaux géomatiques Probabilités et statistiques pour évaluer la qualité des mesures géomatiques Probabilités et statistiques pour évaluer la qualité des solutions d'ajustement 	 Compétences Décrire les différents types d'erreurs et leurs caractéristiques, y compris la manière dont elles se propagent Appliquer la loi de propagation des erreurs aléatoires pour détermine les matrices de variance-covariance des mesures et des grandeurs ajustées Construire des régions de confiance pour les mesures

Organiser, interpréter et évaluer statistiquement les mesures d'arpentage et les éventuels paramètres estimés
Résultats d'apprentissage :
Appliquer la loi de propagation des erreurs aléatoires aux tâches de nivellement et de cheminement et aux problèmes similaires pour prédire les erreurs de fermeture en fonction de la précision des instruments à utiliser et de la précision du ou des réseaux de contrôle
 Effectuer la conception et la pré-analyse du réseau pour les levés GNSS et traditionnels en suivant les spécifications et les directives appropriées
Calculer et analyser les nombres de redondance (et d'absorption), la fiabilité interne et la fiabilité externe du réseau géodésique
Estimer le facteur de variance d'un ajustement et évaluer sa qualité, par ex. dans la détection d'aberrations (valeurs aberrantes)
 Effectuer des tests d'hypothèses statistiques sur la moyenne et la variance pour détecter et identifier les valeurs aberrantes (erreurs) dans les observations
Effectuer des tests d'hypothèses statistiques en utilisant des distributions appropriées (normale, chi carré, t de Student, statistiques F et tau de Pope)
Calculer et analyser les composantes de la variance
 Estimer les résidus d'un ajustement (y compris l'histogramme) et les analyser statistiquement pour détecter d'éventuelles valeurs aberrantes
 Appliquer les concepts d'intervalles de confiance et d'ellipses d'erreur absolue et relative pour exprimer la qualité des levés

	Déterminer et évaluer la précision locale, du réseau, interne et externe des levés
	Déterminer le niveau de confiance et la probabilité d'erreur des décisions statistiques (avec des définitions appropriées du niveau de signification, de la puissance du test, des erreurs de type I et de type II)