

Canadian Board of Examiners for Professional Surveyors

Conseil canadien des examinateurs pour les arpenteurs-géomètres

S1 – Mathematics and Science

Content

• This document is a high-level curriculum design which captures the key principles, competencies, learning outcomes and syllabus items proposed for the updated curriculum specific to S1 – Mathematics and Science.

- Establish the foundational knowledge in math, physics and computing required to be a surveyor
- Support subsequent learning

Key Principles	Motivation	Syllabus Items	Competencies and Learning Outcomes
PROBABILITY AND STATISTICS	Surveyors must be able to deal with errors and uncertainty	 Probability theory: Samples, sample spaces, counting (Combinations, permutations) conditional probability, independence of events Random variables and discrete and continuous distributions: binomial distribution, normal distribution, Probability density functions and cumulative distribution functions, Expected values, covariance and correlation Distribution of the sample mean Distribution of a linear combination, covariance propagation Error Sources Hypothesis testing 	 Competencies Understand the ideas of random variables, independent and dependent samples, and related probabilities Visualize random variables as probability distributions and related probability distributions to mean values and confidence regions Know when to use which distributions and which tests Recognize the existence of Type I and Type II errors in hypothesis testing Recognize the probability density function plots for distributions such as normal, Student's t, chi-squared, and Fisher Learning Outcomes Choose appropriate error models and corresponding probability distributions for different types of surveying observations Compute statistics and visualize data Generate frequency, relative frequency (or probability), and probability values for given critical values of a specified distribution Apply a ninverse cumulative distribution function in order to extract critical values for given probability values of a specified distribution Compute central tendency measures such as median, mode, and mean of a sample Compute spread measures such as range, percentiles, variance, and standard deviation

	Convert an arbitrary normal random variance with specific mean and
	standard deviation to standardized normal distribution
	 Differentiate between confidence and significance levels
	 Compute covariances and correlation coefficients for pairs of multivariate quantities
	 Compute confidence intervals for the mean, for the population variance, and for the ratio of two population variances
	• Differentiate between systematic, random, and gross errors in observations
	• Identify the source of errors (e.g., the environment, the data collection
	instrument, and/or the operator)
	• Conduct a test of hypothesis for the population mean, for the population
	variance, and the ratio of two population variances

- Establish the foundational knowledge in math, physics and computing required to be a surveyor
- Support subsequent learning

Key Principle	Motivation	Syllabus Items	Competencies and Learning Outcomes
NUMERICAL METHODS	Surveyors must deal with numerical data because not all problems can be solved analytically	 Fundamentals of numerical methods; visualize, explore and then model Numerical errors Systems of linear equations Interpolation and extrapolation Numerical integration Numerical aspects of solving systems of equations (least squares and the effects of geometry) 	 Competencies Know why you choose which method by understanding the impact of numerical errors Know how your choices can be affected by numeric layers Learning Outcomes Correctly apply appropriate numerical methods to solve problems and meet required precision Apply the rules of significant figures to determine the number of significant figures in a number Demonstrate appropriate representation of data and results Differentiate between analytical and numerical solutions to a problem Convert between binary and decimal number representations and vice versa Describe typical storage of floating point numbers in a computer system (e.g., single and double precision) Explain terms such as overflow, underflow, machine precision, and round-off, chopping and truncation errors Approximate order of magnitude for truncation error in Taylor series expansion Mitigate unavoidable numerical errors in finite precision arithmetic especially for catastrophic/subtractive cancellation scenarios

-	
	 Estimate absolute and relative (percent) error with respect to a reference value for various purposes including setting convergence criteria in iterative algorithms Set up and solve a 'small' system of linear equations via elimination, decomposition/factorization and/or matrix inversion methods Check a system of linear equations for rank deficiency and numerical illiconditioning Fit a data set to a simple curve such as a line, a quadratic or a cubic via linear least squares regression Differentiate between interpolation and extrapolation Perform interpolation or 'small' data sets using various methods (e.g., nearest neighbour interpolation or interpolating polynomials) Perform interpolation on 'large' data sets using linear, quadratic and/or cubic splines in order to avoid Runge's phenomenon Apply numerical infegrations Apply numerical integration methods for computing areas and volumes Plot results including appropriate significant figures and units
	 Tabulate results including appropriate significant figures and units Solve a 'large' system of linear equations via already existing computational libraries
	computational instances

- Establish the foundational knowledge in math, physics and computing required to be a surveyor
- Support subsequent learning

Key Principles	Motivation	Syllabus Items	Competencies and Learning Outcomes
CALCULUS	Used to solve real-world problems Required to get the results that subsequently get solved with linear algebra	 Functions, continuity & limits Differentiation & applications Integration, quadratures & applications Plane curves, tangency & curvature Sequences, series & Taylor expansions Partial differentiation & differential operators Multiple integrals & numerical approximations Homogeneous ordinary differential equations 	 Competencies Understand the importance, impact and application of using calculus to solve real-world problems Appreciate the concept of small and continuous changes in inputs leading to small and continuous changes in outputs and how this relates to partial derivatives in both variance propagation equations and in least-squares estimation. Understand the relationship between systems of first order ordinary differential equations and the state-space model used estimation. Learning Outcomes Use calculus results to solve other problems (i.e. error propagation) Define & describe mathematical functions Define & evaluate mathematical limits Define differentiability of a function at one point Differentiate simple functions Interpret the derivatives of a function Intergrate simple functions Describe indefinite & definite integrals Evaluate numerically definite integrals Formulate representations of plane curves Describe the tangent to a curve at one point

Describe the curvature of a curve at one point
 Describe sequences and series
 Define convergence of sequences and series
 Formulate tests of convergence for sequences and series
 Perform Taylor series expansions of simple functions
 Define and describe partial differentiation
Partially differentiate simple functions
Define gradient and Laplacian operations and describe their applications
 Define and describe multiple indefinite and definite integrals
 Describe numerical approximation techniques for multiple integrals
 Describe ordinary differential equations and their use in describing
position and velocity as a function of time.

- Establish the foundational knowledge in math, physics and computing required to be a surveyor
- Support subsequent learning

Key Principles	Motivation	Syllabus Items	Competencies and Learning Outcomes
MATRICES & LINEAR ALGEBRA	Surveyors estimate features with positions using observations; linear algebra is the tool used for estimating multiple unknowns	 Vector operations & analytical geometry Real and complex vectors Scalar and vector products of vectors Analytical geometry equations and formulae Matrix algebra, linear equations & transformations Matrices and simple matrix algebra 	 Competencies Understand the geometric interpretation of linear algebra Learning Outcomes Populate vectors and matrices to perform certain vector/matrix
		 Matrix representation of linear algebraic equations and solutions Matrix representation of linear transformations Complex variables, linear spaces & subspaces Complex variables Linear real and complex spaces and subspaces Projections in real and complex spaces 	 operations Perform matrix partition Compute the trace of a square matrix Solve systems of equations Differentiate between row and column vectors Compute the magnitude of a vector Normalize a vector Perform vector operations such as scaling, addition, dot product, and cross product
		 Quadratic forms, orthogonal & unitary matrices Quadratic forms and applications Orthogonal and unitary matrices and their applications Eigen vectors & values 	 Find an angle between two vectors using their dot product Project a vector onto another Compute the eigenvalues and eigenvectors of a square matrix Complete a vector triad using the cross product of two orthogonal vectors Identify matrix dimensions Perform matrix operations such as scaling, addition, multiplication, transposition Compute the determinant of 2D and 3D matrices Invert 2D and 3D matrices by hand and/or with a calculator

	• Recognize special types of matrices such as rectangular, square,
	symmetric, diagonal, block diagonal, identity, etc.
	 Convert a system of equations into vector and matrix form and vice
	versa
	 Detect whether a system is rank deficient (i.e., singular)
	Compute the norm and condition number of a matrix
	• Perform a transformation of a vector or matrix of coordinates from one
	system to another using a scaling factor, translation vector, and a
	rotation matrix
	• Differentiate vector and/or matrix expressions w.r.t. a vector with
	parameters of interest using the numerator convention (also known as
	the Jacobian notation)

- Establish the foundational knowledge in math, physics and computing required to be a surveyor
- Support subsequent learning

Key Principles	Motivation	Syllabus Items	Competencies and Learning Outcomes
PHYSICS	Surveyors use measuring technologies that rely on certain physics principles	 Units of measure SI system of units of measure Vectors and Scalars Kinematics and dynamics Optics (i.e. geometric and physical) Electricity and Magnetism Waves Energy, Acoustics and Wave Motion Physics of the Earth 	 Competencies Understand the laws of physics and how they enable and affect measuring technologies Understand the Système International (SI) system of units of measure in quantity representations for; area, distance (length), frequency, volume, mass, time, electric current, force, energy, gravity and temperature; Know the terms: mass, time, distance, force, acceleration, momentum, gravity, pressure; Understand Newton's Laws of motion Know electric current terms; such as, ampere, charge, potential difference, and resistance; Understand and use the laws of reflection and refraction; Know the terms: humidity, absolute humidity, relative humidity, saturation vapour pressure, equilibrium state Know the atmospheric layers: ionosphere, mesosphere, stratosphere, troposphere, thermosphere, from earth's surface Understand Spheroidal oscillations in elastic waves and seismic rays at earth's surface; Understand physics of the atmosphere and their effect on electromagnetic waves and measurements;

	Learning Outcomes
	 Carry out calculations symbolically and numerically Use unit analysis to verify results/validity of equations Describe physical quantity of anything that may be defined and measured; Describe vectors quantities and magnitude and scalars quantities in magnitude Perform vector addition graphically and mathematically and describe vector positions in coordinate systems Perform linear motion calculations; Perform speed calculation of objects (example; speed of a satellite orbiting the earth); Perform calculations in: Work, Power, Uniform Circular Motion, Gravitational motion, and simple machines; Describe the conditions under which total internal reflection occurs; Define different types of optical lens and find the focal length and power of a lens; The use of Ray Diagrams and lens equation to find the position of
	 Calculate magnification and angular magnification; Describe the telescope as an optical instrument; Describe circular wave patterns in sound wave:
	 Describe Moire pattern in sound propagation; Describe sound intensity; Explain sound wave equation variables
	 Explain sound wave equation variables. Describe Gauss's Law and Coulomb's Law; Calculate the energy and power supplied to electrical components; Calculate magnetic flux density adjacent to wires carrying currents;
	 Describe Faraday's Law and Lenz's Law; Describe the use of Maxwell's Equations;

		 Calculate the force on a moving charged particle; Calculate the force between parallel wires carrying a current; Calculate the value of the permeability of free space from the definition of the ampere; Calculate the torque on a rectangular coil carrying a current in a magnetic field; Describe light and sound as waves, and their wave motion; Describe stationary wave and know how stationary waves are formed; Describe wave harmonics; Explain the terms interference and diffraction of waves (doppler effect, resonance); Explain oscillatory of waves (periodic motion, extension); Describe the principle of superposition of waves; Explain the difference between Amplitude Modulation (AM), Frequency Modulation (FM), and Phase Modulation (PM); Explain energy sources and radiation principles; Describe the electromagnetic spectrum; Describe energy interactions with the earth's surface and the atmosphere; Explain spectral reflectance and response patterns from natural objects Use the Gauss coefficients in determining geomagnetic field; Express gravity as gradient of earth's geopotential; Calculate the velocity of electromagnetic energy as a rate of energy propagates through the atmosphere.
--	--	---

- Establish the foundational knowledge in math, physics and computing required to be a surveyor
- Support subsequent learning

Key Principles	Motivation	Syllabus Items	Competencies and Learning Outcomes
COMPUTING	Surveyors are dealing with increasingly large data sets and need to be able to use software to process and manage data	 Data types Logic Algorithms Functions Input/output Simple program design 	 Competencies Understand the methods used in commercial software packages (COTS) Be able to translate problems to computer solvable programs Develop strategies to manage data at all stages of Land Surveying work from acquisition to inclusion in final products, to long-term archiving. This may include preprocessing, quality assurance, converting, formatting for use with different COTS software, submission with Land Surveying products. Learning Outcomes Understand the procedures involved in developing algorithms Translate surveying problems into computer language Understand the basics of functions, arrays and records Solve problems using computer programming Write simple functions to read and write ASCII and binary data from and to files appropriately formatted files