CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C2 - LEAST SQUARES & DATA ANALYSIS

October 2022

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note:	This examination consists of 10 questions on 3 pages.			
<u>Q. No</u>	Time: 3 hours	Value	Earned	
1.	 Explain the differences between the following: a) Precision and accuracy b) Root mean square error and standard deviation c) Covariance and correlation coefficient d) Internal and external reliability e) Type I and type II errors in statistical testing 	15		
2.	The distance between two points has been independently measured 10 times with the same precision $\sigma = 2$ cm. Determine the precision of the obtained mean distance.	5		
3.	Given the variance-covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $C_{x} = \begin{bmatrix} 0.0484 & 0.0246\\ 0.0246 & 0.0196 \end{bmatrix} m^{2}$	10		
4.	 Given the following mathematical model f(l, x) = 0 C_l C_x where f is the vector of mathematical models, x is the vector of unknown parameters and C_x is its variance matrix, l is the vector of observations and C_l is its variance matrix, a) Linearize the mathematical model b) Formulate the variation function c) Derive the least squares normal equation 	15		
5.	Given the variance-covariance matrix of the measurement vector $\ell = \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix}$: $C_{\ell} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$ and the function $x = \ell_1 + \ell_2$, determine C_x .	5		

	α_1	α_2	α_3	α_4	α_5	
	45°00'05"	45°00'10"	44°59'58"	45°00'07"	44°59'54"	
	The critical value that might be required in the testing is provided in the following table: t_{α}					10
	Degree of freedom	t _{0.90}	t _{0.95}	t _{0.975}	t _{0.99}	
	1	3.08	6.31	12.7	31.8	
	2	1.89	2.92	4.30	6.96	
	3	1.64	2.35	3.18	4.54	
	4	1.53	2.13	2.78	3.75	
I L	5	1.48	2.01	2.57	3.36	
A distance has been independently measured 4 times and its sample unit variance obtained from the adjustment $\hat{\sigma}_0^2$ is equal to 1.44 cm. If the apriori standard deviation σ_0 is 1.0 cm, conduct a statistic test to decide if the adjustment result is acceptable with a significance level of $\alpha = 5\%$. The critical values that might be required in the testing are provided in the following table:						
	α	0.001	0.01 0	0.025 0.05	0.10	10
	$\chi^2_{\alpha,}$	16.26	11.34	9.35 7.82	6.25	
where $\chi^2_{\alpha, \nu=3}$ is determined by the equation $\alpha = \int_{\chi^2_{\alpha, \nu=3}}^{\infty} \chi^2(x) dx$ and ν is the degree of freedom.						
0	iven a levelir	ng network wi	th 200 obse	rved height di	fferences and 50	

9.	deviations required to a) the b) the c) the d) the	s, conduct a o compute th e estimated n e variance-co e estimated o e variance-co	a conditional least so the following quantitie residuals ovariance matrix of the observations			15	
10.	 Conduct a parametric least squares adjustment to the same data given in Problem 9. You are required to compute the following quantities: a) the estimated parameters b) the variance-covariance matrix of the estimated parameters c) the estimated difference between α and β d) the variance of the estimated difference between α and β 					10	
				Tota	l Marks:	100	