C-1 MATHEMATICS

October 2022

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note: This exam	ination consists of 10 questions on 2 pages.	<u>Marks</u>		
O. No	Time: 3 hours	Value Earned		

<u>Q. No</u>	Time: 3 hours	<u>Value</u>	Earned
1.	a) The displacement of a mass on a spring suspended from the ceiling is given by $y(t) = 10e^{-\frac{t}{2}}\cos\left(\frac{\pi t}{8}\right)$ Compute the velocity function $v(t) = y'(t)$. b) Find a time t_0 at which the mass reaches a high or low point of its oscillation.	5	
2.	Here is the definition of divergence for a vector-valued function $\mathbf{F}:(x,y,z) \to (P(x,y,z),Q(x,y,z),R(x,y,z))$. Note that P,Q,R are real-valued functions. $\operatorname{div}\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$ Find the divergence (which is a real number) of $\mathbf{F}(x,y,z) = (xe^y)\mathbf{i} + (z\sin y)\mathbf{j} + (xy\ln z)\mathbf{k}$ at $(-3,0,2)$, where $\mathbf{i},\mathbf{j},\mathbf{k}$ are the standard unit vectors of three-dimensional space.	10	
3.	The curl of the differentiable vector field $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ (think of \mathbf{F}, P, Q, R as in the last question) is the following vector field: $\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{bmatrix}$ where $\frac{\partial}{\partial x}P$ is interpreted to be the partial derivative of P with respect to x (that's a bit of notational abuse). Find the curl (which is a vector) of $\mathbf{F}(x,y,z) = (xe^y)\mathbf{i} + (z\sin y)\mathbf{j} + (xy\ln z)\mathbf{k}$ at $(3,\frac{\pi}{2},e)$	10	
4.	Calculate trace and determinant of A , where $i^2=-1$. $A=\begin{bmatrix}3&3+2i&4+i\\3-2i&-2&i\\4-i&-i&1\end{bmatrix}$	10	

	a) Find the eigenvalues of		
5.	$B = \left[egin{array}{cc} 3 & -1 \ 2 & 0 \end{array} ight]$		
	and find one eigenvector for each eigenvalue.	5	
	b) If λ_1, λ_2 are the eigenvalues and v_1, v_2 are the eigenvectors of B , then we can decompose	5	
	$B = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} v_1 & v_2 \end{bmatrix}^{-1}$		
	Verify this decomposition by executing the matrix multiplication.		
6.	Solve the equation $4x^2 - 24x + 37 = 0$ in the complex numbers.	10	
7.	 a) Chaitali and Amulya go to a concession stand to buy fruit. Chaitali buys 5 bananas and 3 apples and spends \$13.50. Amulya buys 1 banana and 5 apples and spends 20 cents more than Chaitali. How much do bananas and apples cost at the concession stand? Find the answer to this question using Cramer's Rule. b) Let Ax = b be a system of linear equations, where A is an invertible matrix, b is a known vector, and x is an unknown vector. Then you can easily find x using linear algebra: x = A⁻¹b. Use this method to solve the problem in the last question (prices of bananas and apples). 	5	
8.	Find $h'''(x)$ for $h(x) = \tan^2 x$. Note that $\frac{d}{dx} \tan x = \sec^2 x$ and $\frac{d}{dx} \sec x = \tan x \sec x$.	10	
9.	Consider the plane containing the three points $\begin{array}{rcl} P&=&(1,3,0)\\ Q&=&(3,4,-3)\\ R&=&(3,6,2) \end{array}$ Finding a plane equation is easy if we have a normal vector to the plane. The cross product $\vec{PQ}\times\vec{PR}$ is such a normal vector. Calculate this cross product.	10	
10.	In a right spherical triangle with $C=90^{\circ}$, one side $a=126^{\circ}5'20''$ and its opposing angle $A=105^{\circ}55'30''$. Calculate the side c .	10	
	Total Marks:	100	