C7 – REMOTE SENSING & PHOTOGRAMMETRY

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note: T	This examination consists of 10 questions on 2 pages.	Mar	<u>ks</u>
Q. No	Time: 3 hours	<u>Value</u>	Earned
1.	 a) Do we need Fiducial marks for metric digital cameras? Why? b) Briefly explain the following terms and how they are evaluated for a digital imaging system: 1) Geometric resolution, 2) Radiometric resolution, 3) Spectral 	2 4	
	resolution, and 3) Temporal resolution. c) Where in the image is there no Radial Lens Distortion ? Why?	2	
2.	The Figure below shows a 3D schematic diagram of a building and the associated ground coordinate system (in black – upper case XYZ) as well as the image/camera coordinate systems for two images (in grey – lower case xyz) that have been captured around the building. What will be the approximate values you would use for the rotation angles (ω , φ , and κ) for these images in a bundle adjustment procedure? Why? Would you expect any problem in the estimation of these rotation angles in the bundle adjustment procedure? Why?	10	
3.	What is the rotation matrix that relates the coordinate systems in the figure below – given that $r_{o_2a}^{x_1y_1x_1} = [-6 \ 8 \ 10]^T$ and $r_{o_2b}^{x_1y_1x_1} = [6 \ -8 \ 10]^T$? Briefly explain how you derived such a rotation matrix. Note: • $r_{o_2a}^{x_1y_1x_1}$ denotes the components of the vector o_2a with regard to the $x_1y_1x_1$ coordinate system • $r_{o_2b}^{x_1y_1x_1}$ denotes the components of the vector o_2b with regard to the $x_1y_1x_1$ coordinate system	14	

March 2021

	What is the minimum number and optimal configuration of ground control points		
	that are needed for (justify your answer):		
4.	Dependent relative orientation of a stereo-pair,		
	 Independent relative orientation of a stereo-pair, 		
	• Single photo resection,	8	
	 Indirect geo-referencing of an image stereo-pair, and 		
	 Indirect geo-referencing of an image block with 60% overlap and 60% side 		
	lap?		
	a) Explain how you can use the spectral reflectance curve to identify the moisture	2	
	content in vegetation and soil.		
	b) One can argue that digital cameras can see through shadow. Do you agree with	2	
	this statement? Why?		
	c) What is the dynamic range of a color (RGB) digital camera that has	2	
5.	27bits/pixel?		
	d) What are the parameters that are solved for in the following photogrammetric	6	
	problems: 1) Single photo resection; 2) Photogrammetric intersection; 3)		
	Bundle adjustment; 4) Bundle adjustment with self-calibration; 5) Dependent		
	relative orientation for a stereo-pair; and 6) Independent relative orientation for		
	a stereo-pair)?		
	a) Starting from the Collinearity equations derive the mathematical model	8	
	associated with vertical photography. In other words, starting from the equations		
	below for a general image:		
	$r_{11}(X_A - X_O) + r_{21}(Y_A - Y_O) + r_{31}(Z_A - Z_O)$		
	$x_a = x_p - c \frac{r_{11}(X_A - X_o) + r_{21}(Y_A - Y_o) + r_{31}(Z_A - Z_o)}{r_{13}(X_A - X_o) + r_{23}(Y_A - Y_o) + r_{33}(Z_A - Z_o)} + distortion_{x_a}$		
	$y_a = y_p - c \frac{r_{12}(X_A - X_o) + r_{22}(Y_A - Y_o) + r_{32}(Z_A - Z_o)}{r_{12}(X_A - X_o) + r_{22}(Y_A - Y_o) + r_{22}(Z_A - Z_o)} + distortion_{y_a}$		
	$r_{13}(X_A - X_O) + r_{23}(Y_A - Y_O) + r_{33}(Z_A - Z_O) + also to to ry_a$		
6.			
	Derive the equations below for vertical photography (In your derivation,		
	clearly state the assumptions you are making):		
	$x_a = c * \frac{X_A}{H - h_A}$ and $y_a = c * \frac{Y_A}{H - h_A}$		
	$x_a - c + \frac{1}{H - h_A} and y_a - c + \frac{1}{H - h_A}$		
	b) Explain the conceptual basis of the Collinearity Equations, Direct Linear		
	Transformation, Projective Transformation, and Rational Functional Models	6	
	for relating corresponding scene and object coordinates.		
	a) How would the camera aperture size affect the following:	4	
	1. Aberrations,	7	
	2. Chromatics aberrations,		
	3. Diffraction,		
7.	4. Depth of field,		
	5. Depth of focus, and		
	6. Motion blur?		
	b) What are the main characteristics/differences between supervised and	3	
	unsupervised classification strategies? <u>Tabulate your answer</u> .		
	a) What are the image formation principles used for deriving the lens equation	3	_
8.	$(1/image\ distance + 1/object\ distance = 1/focal\ length)?$		
	b) You are given a stereo-pair with identified thirty-nine tie points including	4	
	four ground control points . List the balance between the observables and the		
	unknown parameters in a bundle adjustment procedure to solve for the exterior		
	orientation parameters as well as the ground coordinates of tie points. Can you		
	estimate the involved unknown parameters? Why?		

9.	a)	How is the perspective center defined for the lens assembly for a digital camera system? Would that be different for an analog camera?	3	
	b)	Give a brief definition of the following entities: Nadir point, nodal points,	3	
		principal point, principal distance, focal point, focal length, principal		
		planes, as well as optical axis of a lens system.	4	
	(c)	What is the objective of establishing the interior orientation for a given camera? List the interior orientation parameters that we usually solve for. What	4	
		are the alternative methodologies for deriving the interior orientation		
		parameters of a photogrammetric camera? Which one would you prefer to		
		adopt? Why?		
	(d)	What is the objective of establishing the exterior orientation for a given image?	4	
		List the exterior orientation parameters that we usually solve for. What are the alternative methodologies for deriving the exterior orientation parameters of an		
		imaging system? Which one would you prefer to adopt? Why?		
	a)	What is the EM radiation waveband used in LiDAR remote sensing systems?	1	
		Are they active or passive systems?	_	
	(b)		2	
10.	(c)	Could the following matrix be considered a rotation matrix? Why? $[0.7071 -0.7071 \ 0]$	3	
		$\begin{bmatrix} 0.7071 & -0.7071 & 0 \\ 0.7071 & 0.7071 & 0 \end{bmatrix}$		
		Total Marks:	100	