CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C2 - LEAST SQUARES ESTIMATION & DATA ANALYSIS March 2021

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note: This examination consists of 10 questions on 4 pages.

Note:	This examination consists of 10 questions on 4 pages.		<u>rks</u>
<u>Q. No</u>	Time: 3 hours	<u>Value</u>	Earned
1.	Define and explain the following: a) Difference between precision and accuracy b) Difference between root mean square error and standard deviation c) Difference between covariance and correlation coefficient d) Internal and external reliability e) Type I and type II errors in statistical testing	15	
2.	The distance between Point A and Point B has been independently measured 5 times with the same precision using a distance measuring device and the standard deviation of the obtained mean distance is 1.58 cm. Determine the precision of the distance measurement. A B	5	
3.	Given the variance-covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $C_x = \begin{bmatrix} 0.0484 & 0.0246 \\ 0.0246 & 0.0196 \end{bmatrix} \text{ m}^2$	10	
4.	Given the following mathematical model $f(l, \mathbf{x}) = 0 \qquad \mathbf{C}_{l} \qquad \mathbf{C}_{\mathbf{x}}$ where f is the vector of mathematical models, x is the vector of unknown parameters and \mathbf{C}_{x} is its variance matrix, l is the vector of observations and \mathbf{C}_{l} is its variance matrix: a) Linearize the mathematical model b) Formulate the variation function c) Derive the least squares normal equation	15	

Marks

	Given the varia	nce-covariance	e matrix of the 1	neasurement v	ector $\ell = \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix}$]:	
5.	$\mathbf{C}_{\ell} = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \end{bmatrix}$	$\begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \end{bmatrix}$				5	
	and the function	$\mathbf{n} \mathbf{x} = \ell_1 + \ell_2, \mathbf{c}$	letermine C_x .				
	An angle has been measured independently 5 times with the same precision and the observed values are given in the following table. Test at the 95% level of confidence if the sample mean is significantly different from the true angle value 45°00′00″.						
						-	
	α_1	α_2	$\alpha_{_3}$	α_4	$\alpha_{\scriptscriptstyle 5}$		
	45°00′05″			α ₄ 45°00'07"	α ₅ 44°59′54″]	
6.	_	45°00'10"	be required in	45°00′07″	44°59′54″	the 10	
6.	45°00′05″ The critical va	45°00'10"	be required in	45°00′07″ the testing is	44°59′54″		
6.	The critical va following table Degree of	45°00′10″ lue that might:	be required in	the testing is α	44°59′54″ provided in		
6.	The critical va following table Degree of freedom	45°00′10″ lue that might: t _{0.90}	be required in to to 10.95	the testing is $\frac{\alpha}{t_{0.975}}$	44°59′54″ provided in t _{0.99}		
6.	The critical va following table Degree of freedom	45°00′10″ lue that might: t _{0.90} 3.08	t t _{0.95}	the testing is $\frac{\alpha}{t_{0.975}}$ 12.7	44°59′54″ provided in t _{0.99} 31.8		
6.	The critical va following table Degree of freedom 1 2	t _{0.90} 3.08 1.89	t t _{0.95} 6.31 2.92	the testing is $ \frac{\alpha}{t_{0.975}} $ 12.7 4.30	t _{0.99} 31.8 6.96		

7.	$\chi^2_{\alpha, \ \upsilon=3}$ 16.26 11.34	$\hat{\sigma}_0^2$ is equal to 1.44 cm. If the a- onduct a statistic test to decide if significance level of $\alpha = 5\%$. The in the testing are provided in the $\frac{0.025 0.05 0.10}{9.35 7.82 6.25}$						
	where $\chi^2_{\alpha, \nu=3}$ is determined by the equation $\alpha = \int_{\chi^2_{\alpha, \nu=3}}^{\infty} \chi^2(x) dx$ and ν is the degree of freedom.							
8.	Given a leveling network with 60 obseunknown points, use mathematical equat adjustment (parametric or conditional) you this problem.	ions to explain which method of						
	Given a leveling network (see figure belobservations (see table below). Assume with the same accuracy (σ = 1 mm). P ₃ elevation 2.000 m. Conduct a conditional leveling network. You are required to come a) the adjusted observation residuals b) the variance-covariance matrix of the c) the adjusted observations d) the variance-covariance matrix of the e) the a-posteriori variance factor	that all observations were made is a control point with known il least squares adjustment on the inpute the following quantities: e adjusted observation residuals						
9.	P_3	h ₂ 15						
	$\begin{array}{c cc} h_1 & 2.1 \\ h_2 & -1.3 \end{array}$	125 m 343 m 779 m						

10.	Conduct a parametric least squares adjustment to the same data given in Problem 9. You are required to compute the following quantities: a) the adjusted elevations b) the variance-covariance matrix of the adjusted elevations c) the adjusted observations d) the observation residuals	10	
	Total Marks:	100	