CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C2 – LEAST SQUATRES ESTIMATION & DATA ANALYSIS June 2020

Although calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note:	This examination consists of 9 questions on 3 pages.	Ma	r <u>ks</u>
<u>Q. No</u>	Time: 3 hours	Value	Earned
1.	 Define or explain briefly the following terms: a) Precision b) Accuracy c) Redundancy of a linear system d) Type II errors in statistical testing e) Internal reliability 	10	
2.	Sides <i>a</i> and <i>b</i> are measured once each as follows: $l = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 10 \\ 20 \end{bmatrix} m$ $C_{l} = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} cm^{2}$ a) Estimate the areas of triangle ABD and the circle shown inside the rectangle. b) Estimate the standard deviations of the quantities computed in Part (a). c) Estimate the correlation between the triangle and the circle estimates. d) Discuss the nature of the correlations computed in Part (c).	15	
3.	Consider that the shape of an object is defined by the following equation: $z_i = ax_i^3 + b\sin(y_i)$ where z_i, x_i, y_i are observations with standard deviations $\sigma_{z_i}, \sigma_{x_i}, \sigma_{y_i}$, and <i>a</i> and <i>b</i> are parameters to be estimated. Assume $i = 1, 2, 3$. Write the linearized form of this model and derive the required matrices and vectors.	10	
4.	Given the variance-covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $C_{x} = \begin{bmatrix} 0.000532 & 0.000602\\ 0.000602 & 0.000838 \end{bmatrix} m^{2}$	10	

5.		that $\frac{\sigma}{\sqrt{n}}$ is the theorem of ℓ_i is					$=\frac{\sum_{i=1}^{n}\ell_{i}}{n}, e$	each	10	
	deviat requir a) b) c) d)	the angle n ions, conduc ed to compute the estimate the variance the variance the variance the estimated	t a condi the follow d residuals -covarianc d observati -covarianc	tional leas ving quantit e matrix of ons e matrix of	t squares ties: the estima	adjustmer	nt. You a ls			
6		Angle		urement	Stand	ard Deviat	tion		15	
6.		α		°38'56"		6.7"			15	
		β		17'35"		9.9"				
		γ	142	°03'14"		4.3"				
			<	γ	β					
7.	Proble a) th b) th c) th	act a parametri em 6. You are le estimated para le variance-co le estimated di le variance of	required to arameters variance m ifference b	atrix of the etween α a	he followi e estimated nd β	ing quantiti I parameter	es:	in	10	
8.	netwo standa adjust the ma The cr	the sample u rk $\hat{\sigma}_0^2 = 0.55$ and deviation ment result is ajor test steps ritical values ring table: α	cm^2 with $\sigma_0 = 0.44$ acceptable and explain	a degree c cm, condu e with a sig n the concl	f freedom act a statis nificance usion.	v = 3 and stic test to level of α =	d the a-pr decide if = 5%. Prov	riori the vide	10	
		2								
		$\chi^2_{\alpha, \upsilon=3}$	16.26	11.34	9.35	7.82	6.25			

-+						
	measurement is	independent a	nd made with	the same precisi	5 times. Each ion. The sample lated from the	
	$\overline{\mathbf{x}} = 200.5 \mathrm{r}$	n	s = 0.05m			
	Test at the 95% different from the			easured distance	is significantly	
9.	The critical value that might be required in the testing is provided in the following table:					
		t _α				
9.			t	α		10
9.	Degree of freedom	t _{0.90}	t t _{0.95}	α t _{0.975}	t _{0.99}	10
9.		t _{0.90} 3.08			t _{0.99} 31.8	10
9.	freedom		t _{0.95}	t _{0.975}		10
9.	freedom 1	3.08	t _{0.95} 6.31	t _{0.975} 12.7	31.8	10
9.	freedom 1 2	3.08 1.89	t _{0.95} 6.31 2.92	t _{0.975} 12.7 4.30	31.8 6.96	10
9.	freedom 1 2 3	3.08 1.89 1.64	t _{0.95} 6.31 2.92 2.35	t _{0.975} 12.7 4.30 3.18	31.8 6.96 4.54	10
9.	freedom	3.08 1.89 1.64 1.53	t _{0.95} 6.31 2.92 2.35 2.13	t _{0.975} 12.7 4.30 3.18 2.78	31.8 6.96 4.54 3.75	10