C-1 MATHEMATICS

June 2020

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer.

Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note: This examination consists of 10 questions on 2 pages.		<u>Marks</u>	
Q. No	Time: 3 hours	Value	Earned

1.	Find the Taylor polynomial of order 3 generated by $f(x) = \ln x$ at $a = 1$. Find the Mclaurin series for $f(x) = e^{\frac{x}{2}}$ (a Mclaurin series is a Taylor series at $a = 0$).	5	
2.	Find the solution (x, y, z) that best fits the five equations $x + z = y$ $3x - y = 2z - 12$ $4x + y + z = -4$ $2z - y = x + 6$ $2y + 2x = 3(z - 3)$	5	
	using the least-squares approach. Find the equation of the parabola $y = ax^2 + bx + c$ that passes through the following three points: $(-2, 40), (1, 7), (3, 15)$.	5	
3.	Represent $(\sqrt{3} - i)^{-8}$ as $a + bi$ without the use of a calculator. Show all of your work. Hint: use the polar form $re^{i\theta}$. Find the three cube roots of 1 or unity. In other words, find the solution set	5	
	for $z^3 - 1 = 0$ in the complex numbers.	5	
4.	Solve the ordinary differential equation $\frac{d^2y}{dx^2} = y$ for y as a function of x . (Note that this is equivalent to $y'' = y$.) Solve the partial differential equation $\frac{\partial^2 f}{\partial x \partial y} = xy$ for f as a function of x and y .	5	
5.	A ship leaves Halifax (position $44.67^{\circ}N, 63.58^{\circ}W$), starting due east and continuing on the great circle. Find its position after it has sailed 1000 nautical miles.	5	
	Find its direction after it has sailed 1000 nautical miles from Halifax as above. (Recall that a nautical mile is an angle of one minute along a great circle.)	5	

6.	Given the function $f(x, y, z) = \cos(xyz)$, what is its total derivative? What is the Laplacian $\Delta f(x, y, z)$ of this function? (An alternative notation for $\Delta f(x, y, z)$ is $\nabla^2 f(x, y, z)$.)	5	
7.		5	
	A matrix that equals its conjugate transpose is called a Hermitian matrix. Calculate the determinant of the following 3×3 Hermitian matrix		
	$A = \left[egin{array}{cccc} 2 & 2+i & 4 \ 2-i & 3 & i \ 4 & -i & 1 \end{array} ight]$	5	
		5	
8.	For the preceding matrix A , what is A^2 ?		
	For a function $f(x) = 2^{2x}$, what is $\frac{df(x)}{dx}$ or $f'(x)$?		
	Evaluate the definite integral	5	
	$\int_{1}^{4} \frac{2+x^{2}}{\sqrt{x}} dx$		
	$J_1 = \sqrt{x}$	5	
9.	An arcade uses three different coloured tokens for their game machines. For \$20 you can purchase any of the following mixtures of tokens: 14 gold, 20 silver, and 24 bronze; OR, 20 gold, 15 silver, and 19 bronze; OR, 30 gold, 5 silver, and 13 bronze. What is the monetary value of the bronze token? Use Cramer's rule and show all of your work as if you did not have a calculator.	5	
	Find all interior angles for the triangle with points $P = (-6, -2, -7), Q = (-2, 1, 6), R = (-8, 3, -5).$	5	
10.	Consider the 2×2 matrix		
	$A = \left[\begin{array}{cc} 2 & 1 \\ -6 & 7 \end{array} \right]$	10	
	Find its eigenvalues and for each eigenvalue a corresponding eigenvector.		
	Total Marks:	100	