CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C-3 ADVANCED SURVEYING

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note: This examination consists of 7 questions on 4 pages.

<u>Q. No</u>	Time: 3 hours	Value	Earned
1.	 The standard deviation of Leica DNA03 digital level with invar staff is specified as 0.3 mm/km double-run according to ISO17123-2 standard. Answer the following (clearly providing all necessary equations of problems, error propagations, and good sentence explanations of steps involved, for each of the questions). a) Determine the expected standard deviation of misclosure of forward and backward leveling runs over a 400-m section using the instrument and show numerically if the leveling will satisfy the Canadian special order leveling specification, Δ = 3√L mm (at 95% confidence). b) Determine the expected standard deviation of elevation difference per set up (Note: the sight distance for leveling for ISO standard procedure is 30 m) c) The Leica DNA03 digital level was calibrated according to ISO standard17123-2 as 0.5 mm/km double-run based on least squares adjustment with degrees of freedom of 15. Determine if the level is still consistent with the manufacturer's specified value at 95% confidence level (clearly providing null and alternative hypotheses, statistic, test and conclusion). 	9 4 5	
2.	The two commonly used methods of precise azimuth determination are based on the use of Global Navigation Satellite System (GNSS) and gyrotheodolite/gyro station equipment (e.g. follow-up method). GNSS validation procedure and the gyro station calibration for the alignment constant are the important field calibration processes commonly required prior to field observation. Discuss how these calibration processes are done (providing necessary details on the procedure, the purpose and how often it should be done, for each method).	8	
3.	a) What does the term "Correlation" mean with regard to mining surveying? Explain two important reasons why it is important.b) If the entrance into a mine is through an adit, suggest an appropriate type of correlation survey and explain (with clear reasons) 3 main sources of error in such a survey.	4	
4.	A closed-loop horizontal traverse of 4 points is to be run in a fairly flat and homogeneous terrain using Leica 802 total station with specified standard deviation of 2" according to ISO 17123-3 Standard. Assume each traverse leg is approximately 100 m long; the included angle at each traverse point is approximately 90°; the targets and total station are to be centered on tripods using tribrachs with optical plummets; heights of targets and instrument are to be set at 1.6 m and the included angle at each traverse point is to be measured in one set. With consideration for leveling, centering, pointing and reading errors at each setup point, determine if the traverse will satisfy the allowable angular misclosure of 15" at 95% confidence level.	14	

October 2019

Marks

	In order to provide control for a	construction project, se	ome leveling readings were	;				
	taken over a section based on a three-wire leveling procedure with the leveling run							
	made in both directions. The Ca							
	with two Canadian second order	benchmarks nearby us	sed, and the C-factor of the					
	instrument determined as +0.02 mm/m. The following were determined from the							
	leveling field notes:							
		Forward Run (m)	Backward Run (m)					
	Sum of BS rod readings	7.1013	12.0164					
	Sum of FS rod readings	11.5465	7.5753					
	Sum of BS distances	232.0	234.1					
	Sum of FS distances	236.8	239.1					
	a) Calculate the elevation differ	ence for each run (corr	rected for the effect of	5				
5.	collimation error) and the me	an elevation difference	e (in m to four decimal	5				
	places) for the section.		1 1	3				
	b) Determine if the leveling run	satisfies the Canadian	second order specification.	. 5				
	c) Discuss three important skills	s needed in three-wire	leveling procedure that are	6				
	(justifying each answer)	ing with any modern d	ngitai level equipment	Ŭ				
	d) Discuss four important aspec	to of the Considion first	order vertical control					
	specifications that must be sa	tisfied (including the t	vpes of errors minimized)	_t 8				
	each instrument setup in three	e-wire levelling proced	hure	μ.				
	e) Discuss one important disady	antage of orthometric	height system and explain					
	why surveyors prefer the system to leveled height (uncorrected differential							
	leveling height) system (demonstrating also that you know the differences							
	between the two height systems).							
	Two survey crews A and B measured the length of a horizontal baseline using the							
	same EODMI instrument (with	precision $\pm 3 \text{ mm} \pm 2 \text{ p}$	pm and the reference					
	refractivity as 281.949). Crew A	measured the whole b	aseline and obtained the					
	overall length of the baseline (co	prrected wrongly for m	eteorological condition					
	using refractivity of 300.000 instead of the correct value of 305.520) as 1799.921							
	m. Crew B measured the baseline in two equal sections (with each section							
6.	measured independently) and obtained the meteorologically corrected overall							
	length of the baseline as 1799.931 m. Answer the following, assuming each of the							
	crews was able to center their instrument to an accuracy of 0.8 mm and their target							
	10 U.5 mm. Determine II there is any significant difference (at 99% confidence							
	level) between the two lengths obtained by crews A and B.							
	Answer the following with							
	Answer the following with regard to deformation monitoring and analysis.							
	a) Computed displacement vect	of and its covariance if	vais should not be taken					
	coordinate-difference approach of deformation analysis should not be taken							
	between enochs. Explain with suitable examples three different eases in which a							
7.	datum for deformation monitoring may change from one enoch to another							
	b) In two-epoch method of deformation analysis, what statistical test(s) must be							
	performed on each epoch measurements and in the deformation analysis							
	(naming the statistics and providing their purposes)?							
	(6 Pie	6 r mpood)						
				100				

Some potentially useful formulae are given as follows:

$$v = \frac{Z_{I} + Z_{II} - 360}{2} \qquad \overline{z} = \frac{Z_{I} + (360 - Z_{II})}{2}$$
$$\frac{c}{\sin(z)} = \frac{Hz_{I} - (Hz_{II} - 180)}{2} \qquad \frac{t}{\tan(z)} + \frac{c}{\sin(z)} = \frac{Hz_{I} - (Hz_{II} - 180)}{2}$$

Corrected direction = Measured direction
$$-\frac{(NR - NL) \times v''}{2 \tan z}$$

 $i_v = z - z'$ or $i_v = i \cos \alpha$; $i_T = Hz - Hz'$ or $i_T = \frac{i \sin \alpha}{\tan z}$

Deformation:
$$\ell_2 - \ell_1 + V = Ad$$
; $d = \hat{x}_2 - \hat{x}_1$
 $F_c = \frac{\hat{d}^T Q_{\hat{d}}^{-1} \hat{d}}{\hat{\sigma}_0^2 u_d} < F(\alpha_0, u_d, df_p);$ $F_c = \frac{\hat{d}^T Q_{\hat{d}}^{-1} \hat{d}}{\hat{\sigma}_0^2 u_d} < \frac{\chi^2_{\alpha_0, df = u_d}}{u_d}$
 $\alpha = \frac{\delta \Delta h}{s}$ where $\delta \Delta h = \Delta h_{12t2} - \Delta_{h12t1}.$
 $\sigma_{\alpha} = \frac{\sigma_{\delta \Delta h}}{s}$ where $\sigma_{\delta \Delta h} = \sqrt{\sigma_{\Delta h1}^2 + \sigma_{\Delta h2}^2}$

EDM:

$$n_{a} = 1 + \frac{(n_{g} - 1)273.16p}{(273.16 + t)1013.25} \quad \text{(for } p \text{ in mb and } t \text{ in } ^{\circ}\text{C}\text{)}$$
$$N = (n - 1) \times 10^{6} \qquad \delta' = (N_{REF} - N_{a})d' \times 10^{-6}$$

Standard pressure: 760 mmHg or 1013.25 mb; 0°C or 273.15 K

$$\hat{C} = \frac{M - (m_1 + m_2 + m_3 + m_4 + \dots + m_n)}{n - 1}$$

$$m_1 + 4mm_2\sqrt{L} + 8mm_2\sqrt{L} + 24mm_2\sqrt{L} + 120mm_2\sqrt{L}$$

Levelling: $\pm 3mm\sqrt{L}$ $\pm 4mm\sqrt{L}$ $\pm 8mm\sqrt{L}$ $\pm 24mm\sqrt{L}$ $\pm 120mm\sqrt{L}$ Statistics:

$$\begin{split} |\Delta| &= \sigma_{\Delta} \sqrt{\chi_{df,\alpha}^2} \qquad |\Delta| \leq z_{\alpha/2} \sigma_{\Delta} \qquad |\Delta| \leq t_{df,\alpha/2} \sigma_{\Delta} \qquad \hat{\sigma} \leq \sqrt{\frac{\chi_{\alpha,df}^2(\sigma)}{df}} \\ \sigma_{dp} &= \frac{\sigma_p}{\sqrt{2n}} \qquad \sigma_{dp} = \frac{60}{M} \qquad \sigma_{\theta P} = \frac{\sigma_P}{\sqrt{n}} \qquad \sigma_{dr} = \frac{\sigma_r}{\sqrt{2n}} \qquad \sigma_{dr} = 2.5 \text{ div} \qquad \sigma_{\theta r} = \frac{\sigma_r}{\sqrt{n}} \\ \sigma_L &= \sigma_v \cot z, \qquad \sigma_v = 0.2 v'' \qquad \sigma_r = 2.5 d'' \qquad \sigma_{\theta L} = \sigma_v \sqrt{\cot^2(Z_b) + \cot^2(Z_f)} \\ \sigma_i &= \frac{(206265'')\sigma_{c3}}{S_1} \qquad \sigma_t = \frac{(206265'')\sigma_{c1}}{S_1} \qquad \sigma_{dc} = \frac{206265}{S} \sqrt{\sigma_{c3}^2 + \sigma_1^2} \\ \sigma_c &= \pm 0.5 mm / m \times HI (m) \qquad \sigma_c = \pm 0.1 mm \qquad \sigma_c = \pm 0.1 mm / m \times HI (m) \\ \sigma_{\theta I} &= (206265'')\sigma_{c3} \sqrt{\left[\frac{S_1^2 + S_2^2 - 2S_1S_2 \cos\theta}{S_1^2 S_2^2}\right]} \end{split}$$

$$\sigma_{\theta t+t} = (206265") \sqrt{\frac{\sigma_{c1}^2}{S_1^2} + \frac{\sigma_{c2}^2}{S_2^2} + \frac{\sigma_{c3}^2}{S_1^2 S_2^2} \left[S_1^2 + S_2^2 - 2S_1 S_2 \cos\theta\right]}$$
$$\sigma_P = \frac{45}{206265 \times M} S; \qquad \sigma_L = \left(\frac{\sigma_v}{206265}\right) S; \qquad \sigma_r = \frac{\ell}{2} \left(\frac{v_r}{206265}\right)^2$$

$$\sigma_d = \frac{S}{2R} \sigma_{k_h} \qquad \qquad \sigma_{ref} = \frac{S}{2R} \sigma_{k_h}$$

Table 1: Normal Distribution table (upper tail area):

α	0.001	0.002	0.003	0.004	0.005	0.01	0.025	0.05	0.10
Zα	3.09	2.88	2.75	2.65	2.58	2.33	1.96	1.64	1.28

Table 2: Chi-Square Distribution table (lower tail area)

α	0.025	0.05	0.10	0.90	0.95	0.975	0.99	0.995
Degrees of								
freedom								
1	0.001	0.004	0.016	2.705	3.841	5.024	6.635	7.879
2	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
11	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	5.009	5.892	7.041	19.811	22.362	24.736	27.688	29.819
14	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801

Table 3: Table for Student-t distribution (α is upper tail area)

	t_{α}						
Degree of freedom	t _{0.10}	t 0.05	t _{0.025}	t _{0.01}			
1	3.08	6.31	12.7	31.8			
2	1.89	2.92	4.30	6.96			
3	1.64	2.35	3.18	4.54			
4	1.53	2.13	2.78	3.75			
5	1.48	2.01	2.57	3.36			
6	1.49	1.94	2.45	3.14			
11	1.363	1.796	2.201	2.718			
12	1.356	1.782	2.179	2.681			
13	1.350	1.771	2.160	2.650			
14	1.345	1.761	2.145	2.624			
15	1.341	1.753	2.131	2.602			