CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C2 - LEAST SQUARES ESTIMATION & DATA ANALYSIS October 2019

Note:	This examination consists of 9 questions on 3 pages.			
Q. No	Time: 3 hours	Value	<u>Earned</u>	
1.	Explain briefly the differences between: a) Precision and accuracy b) Type I and Type II errors in statistical testing c) Statistically independent and uncorrelated d) Standard deviation and root mean square error	10		
2.	 Given the following mathematical model f(ℓ, x) = 0 C_ℓ C_x where f is the vector of mathematical models, x is the vector of unknown parameters and C_x is its variance matrix, ℓ is the vector of observations and C_ℓ is its variance matrix, a) Derive the least squares normal equation b) Derive the least squares solution of the unknown parameters and their variance-covariance matrix. 	15		
3.	Sides a and b are measured once each with different precisions as follows: $I = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 10 \\ 20 \end{bmatrix} \text{m}$ $C_I = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \text{cm}^2$ A A A B a) Estimate the areas of triangle ABD and the circle shown inside the rectangle. b) Estimate the standard deviations of the quantities computed in Part a). c) Estimate the correlation between the triangle and the circle estimates. d) Discuss the nature of the correlations computed in Part c).	15		
4.	The distance between Point A and Point B has been independently measured 5 times with the same precision using a distance measuring device and the standard deviation of the obtained mean distance is 1.58cm. Determine the precision of the distance measurement. A B	5		

5.	of a survey station, orientation of the star	determine the semi-m	ne horizontal coordinates najor, semi-minor axis an ociated with this station. [00602] m ²	` • ′		
	deviations, conduct required to compute a) the estimated b) the variance-c) the estimated	a conditional least so the following quantitie residuals covariance matrix of the observations covariance matrix of the	e estimated residuals e estimated observations			
6.	Angle	Measurement	Standard Deviation	15		
0.	$\frac{\alpha}{\beta}$	104°38'56" 43°17'35"	6.7" 9.9"			
	ν ρ	32°03'14"	4.3"			
	2	β	Y			
7.	Problem 6. You are r a) the estimated b) the variance-c c) the estimated	equired to compute the parameters	e estimated parameters and β	10		
8.	Given the sample unit variance obtained from the adjustment of a geodetic network $\hat{\sigma}_0^2 = 0.55\text{cm}^2$ with a degree of freedom $\upsilon=3$ and the a-priori standard deviation $\sigma_0 = 0.44\text{cm}$, conduct a statistical test to decide if the adjustment result is acceptable with a significance level of $\alpha=5\%$. The critical values that might be required in the testing are provided in the following table: $\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
	where $\chi^2_{\alpha, \nu=3}$ is determined as $\chi^2_{\alpha, \nu=3}$ is determined.	rmined by the equation	$\alpha = \int_{\chi^2_{\alpha, \ \nu=3}}^{\infty} \chi^2(x) dx.$			

	A baseline of independently measurements ar	with the sai	me precision	n. The obt		1 1
	d_1	d_2	d_3	d ₄	d_5	
	200.02m	199.93m	199.98m	199.99m	200.01	
	significantly different from the calibrated distance. The critical value that might be required in the testing is provided in the following table: t_{α}					
9.	following table:		t,	α		10
9.	Degree of freedom	t _{0.90}	t _{0.95}	α t _{0.975}	t _{0.99}	
9.	Degree of	t _{0.90} 3.08				
9.	Degree of freedom		t _{0.95}	t _{0.975}	t _{0.99}	
9.	Degree of freedom	3.08	t _{0.95} 6.31	t _{0.975}	t _{0.99}	
9.	Degree of freedom 1 2	3.08 1.89	t _{0.95} 6.31 2.92	t _{0.975} 12.7 4.30	t _{0.99} 31.8 6.96	