CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C2 - LEAST SQUARES ESTIMATION & DATA ANALYSIS October 2018

	Note: This examination consists of 10 questions on 3 pages.				
<u>Q. No</u>	<u>Time: 3 hours</u>	<u>Value</u>	Earned		
1.	 Define and explain the following: a) Difference between precision and accuracy b) Difference between root mean square error and standard deviation c) Difference between covariance and correlation coefficient d) Internal and external reliability e) Type I and type II errors in statistical testing 	15			
2.	The distance between Point A and Point B has been independently measured 5 times with the same precision using a distance measuring device and the standard deviation of the obtained mean distance is 1.58 cm. Determine the precision of the distance measurement. $A \leftarrow B$	5			
3.	Given the variance-covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $C_{x} = \begin{bmatrix} 0.0484 & 0.0246\\ 0.0246 & 0.0196 \end{bmatrix} m^{2}$	10			
4.	 Given the following mathematical model f(l,x) = 0 C_l C_x where f is the vector of mathematical models, x is the vector of unknown parameters and C_x is its variance matrix, l is the vector of observations and C_l is its variance matrix, a) Linearize the mathematical model b) Formulate the variation function c) Derive the least squares normal equation 	15			
5.	Given the variance-covariance matrix of the measurement vector $\ell = \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix}$: $C_{\ell} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$ and the function $\mathbf{x} = \ell_1 + \ell_2$, determine C_x .	5			

$45^{\circ}00'05''$ $45^{\circ}00'10''$ $44^{\circ}59'58''$ $45^{\circ}00'07''$ $44^{\circ}59'54''$ The critical value that might be required in the testing is provided in the following table: t_{α} t_{α} t_{α} t_{α} Degree of freedom $t_{0.90}$ $t_{0.95}$ $t_{0.975}$ $t_{0.99}$ 1 3.08 6.31 12.7 31.8 2 1.89 2.92 4.30 6.96 3 1.64 2.35 3.18 4.54 4 1.53 2.13 2.78 3.75 5 1.48 2.01 2.57 3.36 A distance has been independently measured 4 times and its sample unit variance obtained from the adjustment $\hat{\sigma}_{\theta}^2$ is equal to 1.44 cm. If the a- priori standard deviation σ_0 is 1.0 cm, conduct a statistic test to decide if the adjustment result is acceptable with a significance level of $\alpha = 5\%$. The critical values that might be required in the testing are provided in the following table:10 $\frac{\alpha}{\chi^2_{\alpha, \nu=3}}$ 16.26 11.34 9.35 7.82 6.25		α_1	α_2	α_3	α_4	α_5	
following table:Image: transformed basic colspan="4">to the transformed basic colspan="4">10Image: transformed basic colspan="4">to the transformed basic colspan="4">10Image: transformed basic colspan="4">transformed basic colspan="4">10 </th <th></th> <th>45°00'05"</th> <th>45°00'10"</th> <th>44°59'58"</th> <th>45°00'07"</th> <th>44°59'54"</th> <th></th>		45°00'05"	45°00'10"	44°59'58"	45°00'07"	44°59'54"	
freedom0.300.330.3730.39313.086.3112.731.821.892.924.306.9631.642.353.184.5441.532.132.783.7551.482.012.573.36A distance has been independently measured 4 times and its sample unit variance obtained from the adjustment $\hat{\sigma}_0^2$ is equal to 1.44 cm. If the apriori standard deviation σ_0 is 1.0 cm, conduct a statistic test to decide if the adjustment result is acceptable with a significance level of $\alpha = 5\%$. The critical values that might be required in the testing are provided in the following table:10			ue that might l			s provided in the	10
21.892.924.306.9631.642.353.184.5441.532.132.783.7551.482.012.573.36A distance has been independently measured 4 times and its sample unit variance obtained from the adjustment $\hat{\sigma}_0^2$ is equal to 1.44 cm. If the apriori standard deviation σ_0 is 1.0 cm, conduct a statistic test to decide if the adjustment result is acceptable with a significance level of $\alpha = 5\%$. The critical values that might be required in the testing are provided in the following table:10			t _{0.90}	t _{0.95}	t _{0.975}	t _{0.99}	
31.642.353.184.5441.532.132.783.7551.482.012.573.36		1	3.08	6.31	12.7	31.8	
41.532.132.783.7551.482.012.573.36A distance has been independently measured 4 times and its sample unit variance obtained from the adjustment $\hat{\sigma}_0^2$ is equal to 1.44 cm. If the a- priori standard deviation σ_0 is 1.0 cm, conduct a statistic test to decide if the adjustment result is acceptable with a significance level of $\alpha = 5\%$. The critical values that might be required in the testing are provided in the following table:10		2	1.89	2.92	4.30	6.96	
51.482.012.573.36A distance has been independently measured 4 times and its sample unit variance obtained from the adjustment $\hat{\sigma}_0^2$ is equal to 1.44 cm. If the a- priori standard deviation σ_0 is 1.0 cm, conduct a statistic test to decide if the adjustment result is acceptable with a significance level of $\alpha = 5\%$. The critical values that might be required in the testing are provided in the following table:10		3	1.64	2.35	3.18	4.54	
A distance has been independently measured 4 times and its sample unit variance obtained from the adjustment $\hat{\sigma}_0^2$ is equal to 1.44 cm. If the a- priori standard deviation σ_0 is 1.0 cm, conduct a statistic test to decide if the adjustment result is acceptable with a significance level of $\alpha = 5\%$. The critical values that might be required in the testing are provided in the following table: 10		4	1.53	2.13	2.78	3.75	
variance obtained from the adjustment $\hat{\sigma}_0^2$ is equal to 1.44 cm. If the appriori standard deviation σ_0 is 1.0 cm, conduct a statistic test to decide if the adjustment result is acceptable with a significance level of $\alpha = 5\%$. The critical values that might be required in the testing are provided in the following table: $\alpha 0.001 0.01 0.025 0.05 0.10$ 10		5	1.48	2.01	2.57	3.36	
α 0.001 0.01 0.025 0.05 0.10	variance obtained from the adjustment $\hat{\sigma}_0^2$ is equal to 1.44 cm. If the appriori standard deviation σ_0 is 1.0 cm, conduct a statistic test to decide if the adjustment result is acceptable with a significance level of $\alpha = 5\%$. The critical values that might be required in the testing are provided in the						
$\chi^2_{\alpha, \ \upsilon=3}$ 16.26 11.34 9.35 7.82 6.25	fo		0.001	0.01 0.	025 0.05	0.10	10
$\lambda \alpha, 0=3$	fo	α	1606	113/ 0	.35 7.82	6.25	
where $\chi^2_{\alpha, \ \upsilon=3}$ is determined by the equation $\alpha = \int_{\chi^2_{\alpha, \ \upsilon=3}}^{\infty} \chi^2(x) dx$ and υ is the degree of freedom.	fo		16.26	11.54			

9.	Given the angle measurements of a triangle along with their standard deviations, conduct a conditional least squares adjustment. You are required to compute the following quantities: a) the estimated residuals b) the variance-covariance matrix of the estimated residuals c) the estimated observations d) the variance-covariance matrix of the estimated observations e) the estimated variance factor $ \frac{Angle Measurement Standard Deviation}{\alpha 104^{\circ}38'56'' 6.7''} 9.9''}{\beta 43^{\circ}17'35'' 9.9''} \sqrt{32^{\circ}03'14''} 4.3''} $					
10.	 Conduct a parametric least squares adjustment to the same data given in Problem 9. You are required to compute the following quantities: a) the estimated parameters b) the variance-covariance matrix of the estimated parameters c) the estimated difference between α and β d) the variance of the estimated difference between α and β 					
	Total Marks:	100				