CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C-2 LEAST SQUARES ESTIMATION & DATA ANALYSIS March 2019

Note:	This examination consists of 9 questions on 3 pages.			
<u>Q. No</u>	Time: 3 hours	Value	Earned	
1.	 Explain briefly the following (each 2.5 marks): a) Standard deviation b) Circular error probability c) Root mean square error d) Correlation coefficient e) Type II error in statistical testing f) Redundancy of a linear system 	15		
2.	Given the cofactor matrix Q of the horizontal coordinate (x, y) of a survey station and the unit variance $\hat{\sigma}_0^2 = 2 \text{ cm}^2$, calculate the semi-major, semi- minor axis and the orientation of the standard error ellipse associated with this station. $Q = \begin{bmatrix} 5.32 & 6.02 \\ 6.02 & 8.38 \end{bmatrix}$			
3.	Given a leveling network below where A and B are known points, h_1 and h_2 are two height difference measurements with standard deviation of σ_1 and σ_2 , respectively and $\sigma_1 = 2 \sigma_2$. Determine the value of σ_1 and σ_2 so that the standard deviation of the height solution at point P using least squares adjustment is equal to 2mm. $ \frac{A}{P} = \frac{h_1}{B} $	10		
4.	Given the variance-covariance matrix of the measurement vector $\ell = \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix}$: $C_{\ell} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$ and two functions of $\ell : x = \ell_1 + \ell_2$ and $y = 3\ell_1$, determine $C_{xy}, C_{x\ell}, C_{y\ell}$	10		

	Given the following n					
5.	$f(\ell, x) = 0 C_{\ell} C_{x}$ where f is the vector of mathematical models, x is the vector of unknown parameters and C_{x} is its variance matrix, ℓ is the vector of observations and C_{ℓ} is its variance matrix. a) Linearize the mathematical model b) Formulate the variation function					
6.	Given the angle measurements along with their standard deviations, conduct a conditional least squares adjustment. You are required to compute the following quantities: a) the estimated residuals b) the variance-covariance matrix of the estimated residuals c) the estimated observations d) the variance-covariance matrix of the estimated observations e) the estimated variance factor $\frac{Angle Measurement Standard Deviation}{\alpha 134°38'56" 6.7"}$ $\beta 83°17'35" 9.9"$ $\gamma 142°03'14" 4.3"$					
7.	 Conduct a parametric least squares adjustment to the same data given in Problem 6. You are required to compute the following quantities: a) the estimated parameters b) the variance-covariance matrix of the estimated parameters c) the estimated difference between α and β d) the variance of the estimated difference between α and β 					

8.	Given the network standard adjustme the crite following where χ	the sample of $\hat{\sigma}_0^2 = 0.55$ deviation the entresult is ical values grable: α $\chi^2_{\alpha, \nu=3}$ is det	$cm^{2} with \sigma_{0} = 0.4 s acceptal that mig 0.001 16.26 termined$	nce obta h a degr 4 cm, co ole with a ht be req 0.01 11.34 by the eq	ined from the of free onduct a standing a signification of 0.025 9.35 puation α	the testin 0.05 7.82 $= \int_{\chi^2_{\alpha, \nu=3}}^{\infty} \chi$	astment o = 3 and test to d 1 of α = 5 g are pro- 0.10 6.25 $\chi^2(x)dx$.	f a geodetic the a-prior ecide if the %. vided in the	c i e e 10	
9.	The following residual vector \hat{r} and estimated cofactor matrix $Q_{\hat{r}}$ were computed from a least squares adjustment using independent observations with a standard deviation of $\sigma_0 = 1.5$ mm: $\hat{r} = \begin{bmatrix} 4 & 2 & -3 & 10 \end{bmatrix}$ (mm) $Q_{\hat{r}} = \begin{bmatrix} 15 & 1 & 3 & -2 \\ 1 & 7 & -1 & 3 \\ 3 & -1 & 4 & -1 \\ -2 & 3 & -1 & 2 \end{bmatrix}$ (mm ²) Given that a global test has been rejected with a significance level of $\alpha = 0.04$, conduct further tests to identify which observation(s) may contain an outlier. The critical values that might be required in the testing are provided in the following table: $\boxed{\alpha 0.001 0.002 0.003 0.004 0.005 0.01 0.05 \\ \hline K_{\alpha} 3.09 2.88 2.75 2.65 2.58 2.33 1.64}$ where K _a is determined by the equation $\alpha = \int_{K_{\alpha}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$.						e s = $\frac{1}{10}$ 100			