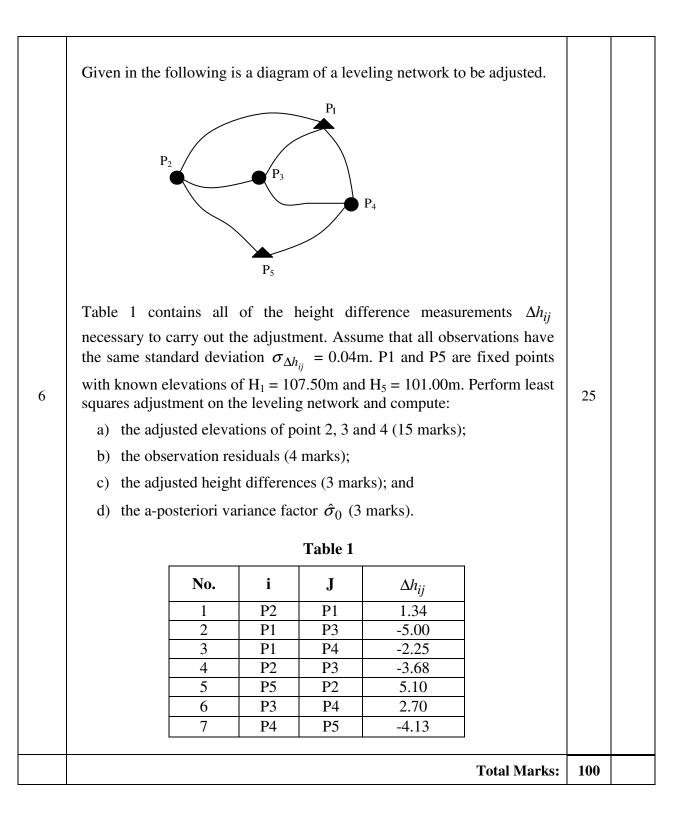
CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS ATLANTIC PROVINCES BOARD OF EXAMINERS FOR LAND SURVEYORS


SCHEDULE I / ITEM 2

October 2006

LEAST SQUARES ESTIMATION AND DATA ANALYSIS

Note:	This examination consists of 6 questions on 3 pages.	<u>Marks</u>	
<u>Q. No</u>	Time: 3 hours	Value	Earned
1	 Given the following mathematical models f₁(l₁, x₁) = 0 C_{l1} C_{x1} f₂(l₂, x₁, x₂) = 0 C_{l2} C_{x2} where f₁ and f₂ are vectors of mathematical models, x₁ and x₂ are vectors of unknown parameters, l₁ and l₂ are vectors of observations, C_{l1}, C_{l2}, C_{x1} and C_{x2} are covariance matrices. a) Linearize the mathematical models (5 marks) b) Formulate the variation function (5 marks) c) Derive the most expanded form of the least squares normal equation system (10 marks) 	20	
2	Given the covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $C_{x} = \begin{bmatrix} 0.0484 & 0.0246 \\ 0.0246 & 0.0196 \end{bmatrix} m^{2}$	10	
3	 Define or explain the following terms: 1) Type I and type II errors in statistical testing 2) Statistical independence and uncorrelation 3) Expectation 4) Unbiasedness of an estimator 5) Standard deviation 6) Root mean square error 7) Degree of freedom of a linear system 8) 	15	

4	 Each measure The sample m from the meas x̄ =1153.3 a) Describe th b) Test at the significant 	ment is indep ean (\bar{x}) and s urements: 9m e major steps t 90% level of y different from lue that might e:	endent and ma ample standar s = 0.06m to test the mea confidence (β m the calibrate be required in	n value. (10 m b) if the measured distance. (10 the testing is p	ame precision. are calculated arks) red distance is) marks)	20
5	Given the fo of a survey s where the co Compute the	10				

