ASSOCIATION OF CANADA LANDS SURVEYORS - BOARD OF EXAMINERS WESTERN CANADIAN BOARD OF EXAMINERS FOR LAND SURVEYORS ATLANTIC PROVINCES BOARD OF EXAMINERS FOR LAND SURVEYORS

SCHEDULE I / ITEM 3 ADVANCED SURVEYING

October 2004

Marks

Notes : This examination consists of 8 questions on 3 pages, plus 1 page of formulae. Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted by the answer.

<u>Q. No</u>	<u>Time: 3 hours</u>	Value	Earned
1.	The ratio of misclosure ["RoM"] in a traverse for horizontal positioning is often called the "precision" of the traverse. By addressing the sources and types of errors that contribute to the uncertainty associated with the RoM, explain whether using the word "precision" is correct in each of the following cases. a) a traverse from one pair of control monuments to a second, different pair of		
	b) a traverse from one pair of control monuments back onto the same pair [i.e., a loop].		
2	In a three dimensional traverse, measured by a total station, face left and face right VCRs were recorded at a setup in order to obtain the zenith angle, z, that would then be used to reduce the slope distance, d _s , to the horizontal, d _H , and to calculate the value of V, the simple [non-geodetic] height difference from the total station to the reflector. The target design was centered on the centre of the reflector and the EODMI optics were symmetric to the telescope. There was a new set-up for each occupation by total station and by reflector [i.e., no "forced centering" using tribrachs]. Between a pair of points A and B, this would result in values of instrument and reflector/target heights of HI_A^F and HR_B^F in one direction ["forward", from A to B] and of HI_B^R and HR_A^R in the other direction ["backward", from B to A]. a) Explain why the values of d_s^F , z^F , V^F [in one direction] and d_s^R , z^R , V^R [in the opposite direction] cannot necessarily be compared directly as checks on the measurements. b) Suggest, with reasons, what might be more appropriate quantities to compare. c) A typical set-up involved, in one direction, $z = 110^\circ \pm 5$ "; HI = 1.6 m ± 0.002 m, HR = 1.8 m ± 0.002 m; $d_s = 200.0$ m ± 0.003 m. What is the uncertainty in the height difference [ground mark to ground mark] derived from such a set-up? d) Explain and show how the uncertainty would be expected to improve for the value of the height difference between ground marks when averaged from both directions along a leg such as in part c.	10	
3	Station AT [119°38'12.6"W; 37°48'50.2"N] was occupied with observations to station RO and α Ursae Minoris [Polaris] as follows. The zone clock times of observation are in Mountain Daylight Saving Time [MDT] on 12 May 1996, as noted. From this one set of observations, determine the azimuth from AT to RO.	20	

Station RO Polaris MDT, 1996 05 12 000°00'12" 314°25'28" 20h 16m 21.5s 134°24'58" 20h 19m 36.1s 180°00'16" Q Ursae Minoris:	
000°00'12" 314°25'28" 20h 16m 21.5s 134°24'58" 20h 19m 36.1s 180°00'16" Q Ursae Minoris:	
134°23' 201 16m 21.55 134°24'58" 20h 19m 36.1s 180°00'16" α Ursae Minoris:	
180°00′16″ α Ursae Minoris:	
α Ursae Minoris:	
α Ursae Minoris:	
· · · · · · · · · · · · · · · · · · ·	
GHA Declination	
$1996 05 12, 0000 01 193^{\circ}18' 56.4'' 89^{\circ}14' 43.04'' \\1996 05 13 0b00 0T 194^{\circ}17' 57 5'' 89^{\circ}14' 43.04'' \\$	
Designing a survey scheme file desiding on the best choice of againment and	
procedures for horizontal positioning can often involve the process of pre	
proceedings for nonzontal positioning can often involve the process of pre- analysis or simulation, with the standard deviations of potential observables $[\sigma_{\alpha}]$	
for angles: σ , for distances] potential geometry [expressed as approximate]	
$coordinates, x^0$ and a relative positioning tolerance [limit on relative ellipses at	
4 95% of a_{95}].	
a) With reference to the appropriate equations and matrix expressions, explain	
how a simulation is performed.	
b) How would you ensure that the intended $\sigma_{\beta i}$ and $\sigma_{s i}$ are realized during the	
observations [i.e., give details of what field checks would be performed]?	
For visible and near infra-red radiation and neglecting the effects of water vapour	
pressure, the refractive index, n, can be determined by	
$0.269578[n_0 - 1]$	
$n-1 = \frac{273}{273} \frac{15+t}{15+t} p$	
The meteorological correction is in the sense that $s = s^2 + c_{met}$, with $c_{met} = k_{met}s^2$	
with $\mathbf{K}_{\text{met}} = [\mathbf{H}_0 - \mathbf{H}]/\mathbf{H}$.	
a) Temperature and pressure are to be measured at each end of a 1700 m distance,	
the refractive index at each end will be calculated, and the average value of n will be used to determine the meteorelegical correction. The instrument being	
be used to determine the ineteorological correction, c_{met} . The instrument being used has $n_c = 1.000294497$ and the average temperature and pressure during the 1	
measurements are expected to be $+30^{\circ}$ C and 950 mb. What would be the largest	
values of σ_t and σ_p that, together with equal contribution to σ_p , would result in a	
meteorological correction that would contribute uncertainty of no more than 2	
ppm to the corrected distance?	
b) What equipment should be used and what procedures should be followed in	
order to ensure that the required precisions in temperature and pressure are met?	
c) If the accuracy [not "precision"] of a distance is to be degraded by no more than	
i c) il die decentery [not precision] of a distance is to be degraded by no more than	
2 ppm as a result of the meteorological correction, what concerns would vou have	

6	a) Explain why a direction observed in one set using a "single second" theodolite, e.g., a Wild T2, does not have a standard deviation of ± 1 ". Suggest what might be a more realistic value for sights to 500 m and inclinations to +/- 30°. b) If a single direction has a standard deviation of σ_{δ} in one set, what is the standard deviation, σ_{β} , of the mean value of an angle, β , measured in n _s sets by the same theodolite under the same conditions? c) Determine the allowable discrepancy between any two of the n _s sets in part b, so that the mean, β , would have the expected standard deviation, σ_{β} . d) If the maximum allowable angular misclosure in a traverse of n _{β} angles is M _{β} , determine the standard deviation, σ_{β} , of each individual angle [i.e., the average from several sets], considering that each would contribute equally to the actual misclosure m _{β} .	10			
	The additive constant [or system constant or zero correction], z_0 , is a correction that is applied to the output of an EODMI, $s = s' + z_0$, to account for the offset between the electronic and mechanical centres of an instrument and reflector combination. The magnitude of z_0 can be as high as 35 mm to 90 mm depending on the reflector mounting and EODMI/reflector combination. a) Explain how z_0 can be uniquely determined. b) If each distance involved in the unique determination of z is ± 0.002 m, what is				
7	b) It each distance involved in the unique determination of z_0 is ± 0.002 m, what is the consequent uncertainty in z_0 ?				
	c) If the same EODMI as in part b is used elsewhere, say $s_i' \pm 0.002$ m, what is the uncertainty in the corrected distance, s_i ?				
	d) Normally corrections are expected to not significantly contribute to the uncertainty of the quantity that they are correcting. In what way could the uncertainty in z_0 be improved?				
	e) i. What type of error contaminates an uncorrected distance, s', if z_0 is not applied? ii. How would that error affect the accuracy and the precision of a traverse involving n_d distances between two pairs of contol points? iii. How would it affect the accuracy and the precision of a traverse involving n_d distances in a loop?				
	The normal levelling of a non-electronic theodolite, using the plate vial, may not be sufficient when considering the effect of the inclination of the standing axis on the HCR of a steeply inclined sight. a) Explain why in the context of a single setup. In this context also, explain whether there is only herefit in taking the manage form form left and for				
8	VCRs.	10			
	c) Suggest at least one way in which the levening of the instrument could be improved.c) Explain the technique and the calculation of at least one way in which a				
	Total Marks:	100			

Percentiles of the χ^2 distribution:

	0.50	0.70	0.80	0.90	0.95	0.975	0.99	0.995
1	0.455	1.07	1.64	2.71	3.84	5.02	6.63	7.88
2	1.39	2.41	3.22	4.61	5.99	7.38	9.21	10.60
3	2.37	3.66	4.64	6.25	7.81	9.35	11.34	12.84

Some useful formulae are given on the following page.

$$\tan Z = \frac{-\sin t}{\tan \delta \cos \varphi - \sin \varphi \cos t}$$

$$\sin Z = -\frac{\sin t \cos \delta}{\cos h}$$

$$\sin Z = \frac{\sin \rho}{\cos \varphi}$$

$$\cos Z = \frac{\sin \delta}{\cos h \cos \varphi} - \tan h \tan \varphi$$

$$C_x = \sigma_0^2 \left[A^T P A \right]^1$$

$$P = Q^{-1}$$

$$C_I = \sigma_0^2 Q$$

$$p_1 = \frac{\sigma_x^2 + \sigma_y^2}{2}$$

$$p_2 = \sqrt{\frac{(\sigma_x^2 - \sigma_y^2)^2}{4} + (\sigma_{xy})^2}}$$

$$a_s = \sqrt{p_1 + p_2}$$

$$b_s = \sqrt{p_1 - p_2}$$

$$2\alpha_{a_s} = \arctan \left[\frac{2\sigma_{xy}}{\sigma_y^2 - \sigma_x^2} \right]$$

$$a_{1-\alpha} = k_{1-\alpha} a_s; \quad b_{1-\alpha} = k_{1-\alpha} b_s; \quad k_{1-\alpha} = \sqrt{\chi_{2,1-\alpha}^2}$$

$$\sigma_{\Delta x \Delta y}^2 = \sigma_{x_1y_1}^2 + \sigma_{x_2y_2}^2 - \sigma_{x_1y_2} - \sigma_{x_2y_1}$$

$$\sigma_{\Delta x \Delta y}^2 = \sigma_{y_1}^2 + \sigma_{y_2}^2 - 2\sigma_{y_1y_2}$$

 $c_{HCR} = e_i \cot z = e_i \tan v = i \sin \alpha \tan v$

$$-\frac{\Delta^2}{2S}$$