ASSOCIATION OF CANADA LANDS SURVEYORS - BOARD OF EXAMINERS WESTERN CANADIAN BOARD OF EXAMINERS FOR LAND SURVEYORS ATLANTIC PROVINCES BOARD OF EXAMINERS FOR LAND SURVEYORS

SCHEDULE I / ITEM 2

October 2004

LEAST SQUARES ESTIMATION AND DATA ANALYSIS

Note:	e: This examination consists of _5_ questions on _2_ pages.				
<u>Q. No</u>	<u>Time: 3 hours</u>	<u>Value</u>	Earned		
1	 Given the following mathematical models f₁(λ₁, x₁) = 0 C_{λ1} C_{x1} f₂(λ₂, x₁, x₂) = 0 C_{λ2} C_{x2} where f₁ and f₂ are vectors of mathematical models, x₁ and x₂ are vectors of unknown parameter, λ₁ and λ₂ are vectors of observations, C_{λ1}, C_{λ2}, C_{x1} and C_{x2} are covariance matrices. a) Formulate the variation function. b) Derive the most expanded form of the least squares normal equation system. 	25			
2	Define and explain the following terms: a) Degree of freedom of a linear system b) Accuracy c) Design matrix d) Precision e) Type I and II errors in statistical testing f) Unbiasedness of an estimator	15			
3	Perform a least squares adjustment of the following leveling network in which three height differences Δh_i , i = 1, 2, 3 were observed. $\Delta h_1 \qquad \qquad$	25			

$\frac{1}{1} + \frac{1}{3.08} + \frac{1}{6.31} + \frac{1}{12.7} + \frac{1}{31.8} + \frac{1}{2} + \frac{1}{1.89} + \frac{2.92}{2.92} + \frac{4.30}{4.30} + \frac{6.96}{6.96} + \frac{3}{3} + \frac{1.64}{2.35} + \frac{2.13}{3.18} + \frac{4.54}{4.54} + \frac{4}{4} + \frac{1.53}{2.13} + \frac{2.78}{2.57} + \frac{3.75}{3.36} + \frac{3.75}{5} + \frac{1.48}{2.01} + \frac{2.57}{2.57} + \frac{3.36}{3.36} + \frac{3.6}{2.57} + \frac{1}{2.57} + 1$	4	 A baseline of calibrated length (μ) 100.0m is measured 5 times. Each measurement is independent and made with the same precision. The sample mean (x̄) and sample standard deviation (s) are calculated from the measurements: x̄ =100.5m s = 0.05m a) Describe the major steps to test the mean value. b) Test at the 1% level of confidence if the measured distance is significantly different from the calibrated distance. The critical value that might be required in the testing is provided in the following table: 						
$\frac{1}{1} + \frac{3.08}{3.08} + \frac{10.93}{2.92} + \frac{10.93}{3.08} + \frac{10.93}{3.0$				t	α			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		e	t _{0.90}	t _{0.95}	t _{0.975}	t _{0.99}		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	3.08	6.31	12.7	31.8		
4 1.53 2.13 2.78 3.75 5 1.48 2.01 2.57 3.36 Given the following direct model for y1 and y2 as a function of x1, x2 and x3: y1 = $2x_1 - x_2 - x_3 + 20$ y2 = $x_1 + x_2 - 3x_3 - 50$ the covariance matrix of the x's: 15 Compute the covariance matrix Cy for y's.		2	1.89	2.92	4.30	6.96		
51.482.012.573.36Given the following direct model for y_1 and y_2 as a function of x_1, x_2 and x_3 : $y_1 = 2x_1 - x_2 - x_3 + 20$ $y_2 = x_1 + x_2 - 3x_3 - 50$ the covariance matrix of the x's:15 $C_x = \begin{bmatrix} 4 & -2 & -1 \\ -2 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$ Compute the covariance matrix C_y for y's.		3	1.64	2.35	3.18	4.54		
Given the following direct model for y ₁ and y ₂ as a function of x ₁ , x ₂ and x ₃ : $y_1 = 2x_1 - x_2 - x_3 + 20$ $y_2 = x_1 + x_2 - 3x_3 - 50$ where x ₁ = x ₂ = x ₃ = 1 and the covariance matrix of the x's: $C_x = \begin{bmatrix} 4 & -2 & -1 \\ -2 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$ Compute the covariance matrix C _y for y's.		4	1.53	2.13	2.78	3.75		
x ₃ : $y_{1} = 2x_{1} - x_{2} - x_{3} + 20$ $y_{2} = x_{1} + x_{2} - 3x_{3} - 50$ where $x_{1} = x_{2} = x_{3} = 1$ and the covariance matrix of the x's: $C_{x} = \begin{bmatrix} 4 & -2 & -1 \\ -2 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$ Compute the covariance matrix C_{y} for y's.		5	1.48	2.01	2.57	3.36		
	5	x ₃ : $y_1 = 2x_1 - x_2 - x_3 + 20$ $y_2 = x_1 + x_2 - 3x_3 - 50$ where $x_1 = x_2 = x_3 = 1$ and the covariance matrix of the x's: $C_x = \begin{bmatrix} 4 & -2 & -1 \\ -2 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$						
						Total Marks:	100	<u> </u>