SCHEDULE I / ITEM 2

October 2008

1

LEAST SQUARES ESTIMATION AND DATA ANALYSIS

Note:	This examination consists of 8 questions on 3 pages.	<u>Marks</u>	
Q. No	<u>Time: 3 hours</u>	Value	Earned
1	Define or explain the following terms:	2	
	a) Precision	2	
	b) Accuracyc) Standard deviation	2	
	d) Root mean square error	2	
	e) Correlation coefficientf) Redundancy of a linear system	2	
	g) Type I and type II errors in statistical testing	2	
		3	
2	Given the cofactor matrix Q of the horizontal coordinate (x, y) of a survey station and the unit variance $\hat{\sigma}_0^2 = 2 \text{ cm}^2$, calculate the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $Q = \begin{bmatrix} 5.32 & 6.02 \\ 6.02 & 8.38 \end{bmatrix}$	10	
3	Given the following mathematical model $f(\lambda,x)=0 C_{\lambda} C_{x}$ where f is the vector of mathematical models, x is the vector of unknown parameters and C_{x} is its variance matrix, λ is the vector of observations and C_{λ} is its variance matrix. a) Linearize the mathematical model b) Formulate the variation function c) Derive the least squares normal equation d) Derive the least squares solution of the unknown parameters.	2 3 4 6	

4	Given a leveling network below where A and B are known points, h_1 and h_2 are two height difference measurements with standard deviation of σ_1 and σ_2 , respectively and $\sigma_1 = 2$ σ_2 . Determine the value of σ_1 and σ_2 so that the standard deviation of the height solution at P using a least squares adjustment is equal to 2 mm.	10	
5	Given the variance-covariance matrix of the measurement vector $\lambda = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$: $C_{\lambda} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$ and two functions of λ : $x = \lambda_1 + \lambda_2$ and $y = 3\lambda_1$, determine $C_{xy}, C_{x\lambda}, C_{y\lambda}$	10	
6	Given the angle measurements at a station along with their standard deviations:	25	

7	Given the sample unit variance obtained from the adjustment of a geodetic network $\hat{\sigma}_0^2 = 0.55\text{cm}^2$ with a degree of freedom $\upsilon = 3$ and the a-priori standard deviation $\sigma_0 = 0.44\text{cm}$, conduct a statistic test to decide if the adjustment result is acceptable with a significance level of $\alpha = 5\%$. The critical values that might be required in the testing are provided in the following table:	1	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	$\chi^2_{\alpha, \nu=3}$ 16.26 11.34 9.35 7.82 6.25		
	where $\chi^2_{\alpha, \nu=3}$ is determined by the equation $\alpha = \int_{\chi^2_{\alpha, \nu=3}}^{\infty} \chi^2(x) dx$.		
8	The following residual vector $\hat{\mathbf{r}}$ and estimated cofactor matrix $Q_{\hat{\mathbf{r}}}$ were computed from a least squares adjustment using independent observations with a standard deviation of σ_0 = 1.5 mm: $\hat{\mathbf{r}} = \begin{bmatrix} 4 & 2 & -3 & 10 \end{bmatrix} \qquad (mm)$ $Q_{\hat{\mathbf{r}}} = \begin{bmatrix} 15 & 1 & 3 & -2 \\ 1 & 7 & -1 & 3 \\ 3 & -1 & 4 & -1 \\ -2 & 3 & -1 & 2 \end{bmatrix} \qquad (mm^2)$ Given that a global test has been rejected with a significance level of α = 0.04, conduct further tests to identify which observation(s) may contain an outlier. The critical values that might be required in the testing are provided in the following table:	10	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	$\begin{array}{ c c c c c c c c c }\hline K_{\alpha} & 3.09 & 2.88 & 2.75 & 2.65 & 2.58 & 2.33 & 1.64 \\ \hline \text{where } K_{\alpha} \text{ is determined by the equation } \alpha = \int_{K_{\alpha}}^{\infty} \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-x^2/2} \mathrm{d}x . \end{array}$		
	Total Marks:	100	