CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C-1 MATHEMATICS

October 2017

Note:	This examination	consists of	ten questions	on one page.
-------	------------------	-------------	---------------	--------------

<u>Marks</u>

<u>Q. No</u>	Time: 3 hours	Value	Earned
1.	 a) Briefly discuss the process as x tends to x_o as a limit for a function f(x) known to be continuous at x_o. What is the corresponding situation when f(x) is not continuous at x_o? Illustrate with simple examples in each case. 	5	
	b) What is called the curvature of a function g(x) at some x = x _o ? Use simple function examples with variable curvature.	5	
2.	a) Given a second-degree algebraic polynomial $x^2 + 5x + 7$, what are its roots?	5	
	b) Given three real numbers 3.1, 5.2 and 7.3, what is a cubic polynomial with these as roots?	5	
3.	a) For a real Cartesian function $f(x,y,z) = (x+y+z) \cdot e^{xyz}$, what is its gradient?	5	
	b) What is the divergence of the vector function $\mathbf{g}(x,y,z) = (x \cdot e^x, y \cdot e^y, z \cdot e^z)$?	5	
4.	a) What is the inverse of the small matrix $\begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$ in terms of its determinant?	5	
	b) What are the eigenvalues of the previous matrix?	5	
5.	a) What are all the real and complex roots of $z^4 + 1$?	5	
	b) What is the exponential form of $(\cos \theta + i \sin \theta)^n$ for some n with $i = \sqrt{-1}$?	5	
6	a) Formally, $(1 - x)^{-1} = 1 + x + x^2 + x^3 +$, does the series converge for all x?	5	
6.	b) What is the n-th term in the corresponding series expansion of $(1 + x^2)^{-1}$?	5	
7.	a) Given three equations: $x + 2y + 3z = 1$, $x - 2y - 3z = 2$ and $x - 4y + 5z = 3$, what are x, y and z by Gaussian elimination?	5	
	b) Solve the preceding linear system using matrix algebra.	5	
8.	a) A simple harmonic oscillator has the differential equation $d^2x / dt^2 - k^2x = 0$ in terms of time t for some constant k. What is the solution $x(t)$ for arbitrary time $t > 0$, assuming $x(0) = 0$ and given $dx/dt = v(t)$ at $t = 0$?	5	
	b) Solve the simple differential equation $d^2x/dt^2 + 4 dx/dt + 15x = 0$ explicitly for a complete solution with unspecified constants.	5	
9.	a) Given two vector quantities $\mathbf{u} = 1 \mathbf{i} + 2 \mathbf{j} + 3 \mathbf{k}$ and $\mathbf{v} = 4 \mathbf{i} + 5 \mathbf{j} + 6 \mathbf{k}$, where i , j and k form a Cartesian triad of unit vectors, what is their vector product?	5	
	b) What is a unit vector w normal to u and v ?	5	
10.	On a unit sphere, given three arbitrary points in terms of their latitude and longitude, show how to compute the spherical triangle area (assuming the sides less than $\pi/2$ for simplicity). Illustrate the situation with a simple example.		
	Total Marks:	100	