CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C-1 MATHEMATICS

October 2013

Note: This examination consists of ten questions on one page.

<u>Marks</u>

<u>Q. No</u>	<u>Time: 3 hours</u>	Value	Earned
1.	a) Given a curve $y = f(x)$ in a Cartesian (x, y) plane, describe the evaluation of its slope at any point $x_{o.}$	5	
	b) Given a curve $y = f(x)$ in a Cartesian (x, y) plane, describe the evaluation of its curvature at any point x_{0} .	5	
2.	a) For a function $f(x) = 2^{2x}$, what is $df(x) / dx$ or $f'(x)$?	5	
	b) For a function $f(x,y) = 2^{x+y}$, what is the total derivative $df(x, y)$?	5	
3.	a) What is the dot or scalar product of two vectors $\mathbf{a} = (1, 3, 5)$ and $\mathbf{b} = (2, 4, 6)$?	5	
	b) What is the cross or vector product of the same vectors a and b ?	5	
4.	a) What is the inner product of two arbitrary vectors c = (1, 2, 3, 4, 5) and d = (6, 7, 8, 9, 10) ?	5	
	b) What is the outer product of the same two vectors c and d ?	5	
5.	a) What is an orthogonal matrix? Give an example of a simple application.	5	
	b) What is a unitary matrix? Give an example of a simple application.	5	
6.	a) What is a Taylor expansion of a function $f(x)$ at an arbitrary point x_0 ?	5	
	b) Give the first few terms of the expansion of $f(x) = e^x$ at $x_0 = 1$.	5	
7.	a) Illustrate Gaussian elimination for solving a system of three linear equations.	5	
	b) Given five linear equations for three unknowns, illustrate the least-squares approach to estimate the three unknowns.	5	
8.	a) What is a quadratic form for the residuals of an overdetermined system of linear equations solved by least squares?	5	
	b) What are a few simple properties of such quadratic forms?	5	
9.	a) Finite differences are often used for modeling and solving differential equations. What are they? Illustrate with simple examples.	5	
	b) Finite elements are also used for similar purposes such as in geophysics. What are they? Illustrate with simple examples.	5	
10.	a) For an arbitrary spherical triangle, its area is computed in terms of the spherical excess quantity. What is a spherical excess? Illustrate with simple examples.	5	
	 b) Although the Earth is often said to be spherical, it is known to be better approximated by a spheroid, or an ellipsoid of revolution, or a triaxial ellipsoid. What are these? 	5	
	Total Marks:	100	