CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C-1 MATHEMATICS

March 2018

Note: NO CALCULATORS ALLOWED for this examination of ten questions on one page. Marks

<u>Q. No</u>	<u>Time: 3 hours</u>	Value	Earned
1.	a) Describe differentiation as the limit of a ratio of changes for a simple function.	5	
	 b) Does continuity of a function f(x) imply that the preceding limit exists at some arbitrary point x_o? Illustrate with simple examples. 	5	
2.	a) What is the gradient of a scalar function $z = g(x,y)$ in Cartesian (x,y,z) space?	5	
	b) What does a null gradient imply for the preceding function $z = g(x,y)$? Using simple examples, briefly discuss the situation.	5	
3.	a) In Cartesian (x,y,z) space, what is the scalar or dot product of two vectors (a,b,c) and (d,e,f)? Illustrate the situation geometrically.	5	
	b) What is the vector or cross product of these two vectors (a,b,c) and (d,e,f)? Illustrate the situation geometrically.	5	
4.	a) The harmonic series $1+1/2+1/3++1/n+$ diverges. What does that mean in terms of the partial sums?	5	
	b) The series $1+1/4+1/9++1/n^2+$ converges. What does that mean in terms of the partial sums?	5	
5.	a) A small matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is known to be orthogonal. What are the implications for the elements a, b, c and d?	5	
	b) What is the characteristic polynomial of the preceding small matrix?	5	
6.	a) Given three linear equations $x + 2y + 3z = 6$, $2x - 3y - z = 3$, $3x + y + z = 7$ what are x, y and z using Cramer's rule?	5	
	b) Using linear matrix algebra, verify the solution of the preceding equations.	5	
7.	a) What is the inverse function of $f(x) = e^{\sin x + 1}$?	5	
	b) For a complex variable z, what are the real and imaginary parts of e^{2z+3} ?	5	
8.	a) The ordinary differential equation $dx/dt = 2x + \cos t$ has a general solution $x(t)$ with initial condition $x(0) = -2/5$. Show how to solve this initial value problem.	5	
	b) The ordinary differential equation $d^2y/dt^2 - 3y = 0$ corresponds to a simple harmonic motion y(t). What is a simple general solution?	5	
9.	a) For a vector function $\mathbf{g} = (\sin xy, \cos xy, \tan z)^T$ in Cartesian (x,y,z) space, what is the divergence of \mathbf{g} ?	5	
	b) For the same vector function g , what is the curl of g ?	5	
10.	Considering two points A and B of equal latitude on a sphere of radius R, what is the difference between the great circle arc AB and the parallel arc AB for the same longitude difference $\Delta \lambda > 0$? Where is the difference zero?	10	
	Total Marks:	100	