CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C-1 MATHEMATICS

October 2012

No calculators are to be used on this exam. Note: This examination consists of ten questions on one page.

<u>Marks</u>

<u>Q. No</u>	Time: 3 hours	Value	Earned
1.	a) What is the inverse of the function $f(x) = 2 \sin 3x$? Is that inverse unique?	5	
	b) Is that function $f(x) = 2 \sin 3x$ continuous and differentiable? Briefly justify.	5	
2.	a) Differentiate the following function $z = x^{x+1}$ with respect to x.	5	
	b) Integrate the following expression $dz/dx = \ln x$ where $\ln \text{ means } \log_{e_1} dx$	5	
3.	a) Given the function $g(x) = \sin^2 x$, what is the direction of its tangent at some $x =$	5	
	x _o ?	5	
	b) For the same function $g(x) = \sin^2 x$, what is its curvature at some $x = x_0$?	5	
4.	a) Expand the expression $(1 + 3x)^{-1}$ about $x = 0$. Give the first three terms only.	5	
	b) What can be said about the convergence of the preceding expansion?	5	
5.	a) Given the function $f(x,y,z) = \sin xyz$, what is its total derivative?	5	
	b) What is the Laplacian Δ or ∇^2 of this function $f(x,y,z) = \sin xyz$?	5	
6.	a) What is the LU (i.e. lower triangular times upper triangular) decomposition of a given square matrix? Illustrate with a small 3×3 matrix.	5	
	b) How is the LU decomposition of the coefficient matrix useful for solving a system of N linear equations for N unknowns? Illustrate with a system of 3 equations.	5	
7.	a) What is an orthogonal matrix? Give examples of orthogonal matrices of orders	5	
	b) A covariance matrix is normally symmetric and positive definite. Briefly explain.	5	
8.	a) Cartesian reference systems (or datums) are related by isometries i.e. rotations and translations. Formulate a datum transformation $(X, Y) \rightarrow (X', Y')$ using a rotation θ and translations X_0 and Y_0 .	5	
	b) Briefly indicate how to generalize the previous datum transformation to three dimensions: $(X, Y, Z) \rightarrow (X', Y', Z')$.	5	
9.	a) Euler's most famous relation or identity $e^{\pi i} = -1$ for the exponential of πi with i being the imaginary or the square root of -1 is easily justified. Briefly explain.	5	
	b) Use the preceding expression to evaluate the logarithm of a negative number.	5	
10.	On the spherical Earth, given two arbitrary points $P_1 = (\varphi_1, \lambda_1)$ and $P_2 = (\varphi_2, \lambda_2)$ in terms of their latitudes and longitudes, draw the corresponding spherical triangle and indicate how to compute the spherical distance P_1P_2 and the azimuth from the first point P_1 to the second P_2 (i.e. the clockwise direction measured from the North pole).	10	
	Total Marks:	100	