CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C-1 MATHEMATICS

March 2011

 Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct. Note: This examination consists of ten questions on one page.
 Marks

 Q. No
 Time: 3 hours
 Value
 Earned

<u>Q. No</u>	<u>1 ime: 3 nours</u>	Value	Earned
1.a)	Expand $sin(x+iy)$ and $cos(x+iy)$ for real x and y with the imaginary i, that is the square-root of -1.	5	
b)	Verify that $\sin^2 z + \cos^2 z = 1$ for complex $z = x+iy$ with real x, y and imaginary i.	5	
2.a)	Differentiate $y = 2 \cos(3x - \pi)$ with respect to x and simplify.	5	
b)	For an arbitrary function $f(x)$, what is the difference between its continuity and its differentiability at some point $x = x_0$? Illustrate the answer with diagrams.	5	
3.a)	What is the Cartesian equation of a triaxial ellipsoid with semi-axes a, b, c and centre at the origin of the coordinate system?	5	
b)	What is the spherical polar equation of a triaxial ellipsoid with semi-axes a, b, c and centre at the origin of the coordinate system?	5	
4.a)	Evaluate the sum of the arithmetic sequence {1, 2, 3,, 98, 99}	5	
b)	Evaluate the sum of the geometric sequence {1, 2, 4, 8,, 1024}	5	
5.a)	For complex variables z and w, what is the nature of the transformation $w = \alpha z$ for some complex scalar α ?	5	
b)	For complex variables z and w, what is the nature of the transformation $w = \alpha z + \beta$ for some complex scalars α and β ?	5	
6.a)	What are the inner and outer products of the two vectors $(1, 3, 5)^{T}$ and $(7, 9, 8)^{T}$?	5	
b)	What is the angle between the two preceding vectors?	5	
7.a)	Given a small matrix A with elements $a_{ij} = (i+j)^2$ for i=1,2,3 and j=1,2,3, what is the determinant of A?	5	
b)	What is the characteristic polynomial for the preceding matrix A?	5	
8.a)	Given the following equations: $2x + 3y + 4z = 16$, $3x - 4y + 5z = 6$, and $4x - 5y + 6z = 8$, what are x, y and z by Cramer's rule?	5	
b)	Given the following equations: $2x + 3y + 4z = 0$, $3x - 4y + 5z = 0$, and $4x - 5y + 6z = 0$, what are the possible x, y and z?	5	
9.a)	What is the area under the curve $y = e^{5x}$ between $x = 0$ and $x = 1$?	5	
b)	What is the length of the curve $y = e^{5x}$ between $x = 0$ and $x = 1$?	5	
10.a)	Given two arbitrary points (φ_1, λ_1) and (φ_2, λ_2) on the spherical Earth with latitude φ and longitude λ , what is a formula for the (spherical arc) distance between them?	5	
b)	Are there any ambiguities in the preceding answer for the spherical distance?	5	
	Total Marks:	100	