CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

SCHEDULE I / ITEM 2 LEAST SQUARES ESTIMATION & DATA ANALYSIS

March 2010

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note:	This examination consists of 8 questions on 3 pages.	<u>Marks</u>	
<u>Q. No</u>	Time: 3 hours	Value	Earned
1.	 Define and explain briefly the following terms: a) Precision and accuracy b) Type I and Type II errors in statistical testing c) Statistically independent and uncorrelated d) Standard deviation and root mean square error 	2.5 2.5 2.5 2.5	
2.	Given the following mathematical model $f(\ell, x) = 0$ C_{ℓ} C_{x} where f is the vector of mathematical models, x is the vector of unknown parameters and C_{x} is its variance matrix, ℓ is the vector of observations and C_{ℓ} is its variance matrix. a) Linearize the mathematical model b) Formulate the variation function c) Derive the least squares normal equations d) Derive the least squares solution of the unknown parameters.	3 3 7 7	
3.	The distance between Point A and Point B has been independently measured 5 times with the same precision using a distance measuring device and the standard deviation of the obtained mean distance is 1.58cm. Determine the precision of a single distance measurement. $A \leftarrow B$	5	
	Civen the angle magnements of a triangle slarg with their standard		
4.	Given the angle measurements of a triangle along with their standard		

	deviations:									
	Г	Angle Measurement Standard Deviation								
		α	104°3	38'56"		6.7"				
		β	33°1	7'35"		9.9"				
		γ	42°0	3'14"		4.3"				
	Perform least squares adjustment to the problem using a). Conditional equations (conditional adjustment)								12.5	
	b) Observation equations (conditional adjustment)						12.5			
5.	Given the variance-covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $C_{x} = \begin{bmatrix} 0.0484 & 0.0246\\ 0.0246 & 0.0196 \end{bmatrix} m^{2}$						10			
6	A distance has been independently measured 4 times and its sample unit variance obtained from the adjustment $\hat{\sigma}_0^2$ is equal to 1.44 cm. If the appriori standard deviation σ_0 is 1.0 cm, conduct a statistical test to decide if the adjustment result is acceptable with a significance level of $\alpha = 5\%$. The critical values that might be required in the testing are provided in the following table:							10		
0.	where χ	α $\chi^{2}_{\alpha, \nu=3}$ $\chi^{2}_{\alpha, \nu=3}$ is determined	0.001 16.26	0.01 11.34 y the equ	0.025 9.35 ation α =	$0.05 = \int_{\chi^2_{\alpha, \nu=3}}^{\infty} 2^{\alpha}$	$\begin{array}{c} 0.10\\ 6.25\\ \chi^2(x)dx\end{array}$	and v	10	
	is the degrees of freedom.									

	An angle has be and the observe level of confide true angle value						
	$\alpha_{_1}$	α_{2}	α_{3}	$lpha_{_4}$	$lpha_{5}$		
	45°00'05''	45°00'10"	44°59'58"	45°00'07"	44°59'54''		
7.	The critical val following table:	15					
	Degrees of freedom	t _{0.90}	t _{0.95}	t _{0.975}	t _{0.99}		
	1	3.08	6.31	12.7	31.8		
	2	1.89	2.92	4.30	6.96		
	3	1.64	2.35	3.18	4.54		
	4	1.53	2.13	2.78	3.75		
	5	1.48	2.01	2.57	3.36		
	Given the varia						
8.	$\mathbf{C}_{\ell} = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \end{bmatrix}$	5					
	and the functior						
					Total Marks:	100	