CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

SCHEDULE I / ITEM 1

March 2010

<u>Marks</u>

MATHEMATICS

Note: The use of calculators or similar devices is not permitted in this exam. Note: This examination consists of 10 questions on 1 page.

<u>Q. No</u>	<u>Time: 3 hours</u>	Value	Earned
1.	a) What is a (mathematical) function? How does a function differ from a simple relation between two variables? Give simple examples.	5	
	b) What is the inverse of a function called? Give simple examples.	5	
2.	a) Define the limit of an infinite sequence such as 1, 1/2, 1/3, 1/4,	5	
	b) Define the sum of an infinite series such as $1 + 1/4 + 1/9 + 1/16 +$ Express the sum as the limit of an infinite sequence.	5	
3.	a) Expand $(2 + 3x)^{-1}$ as a power series in x. Give the first five terms only.	5	
	b) Does the previous power series in x converge for all values of x? Explain.	5	
4.	a) Express sin θ and cos θ in terms of $e^{i\theta}$, or exponential $i\theta$, for imaginary $i \equiv (-1)^{1/2}$	5	
	b) What is $e^{i\theta}$ for θ equal to 0, $\pi/2$ and π ?	5	
5.	a) Solve the quadratic equation $ax^2 + bx + c = 0$ for some given parameters a, b and c	5	
	b) Solve the quartic equation $dx^4 + ex^2 + f = 0$ for some given parameters d, e and f.	5	
6.	a) Given three linear algebraic equations	5	
	a'x + b'y + c'z = d' $a''x + b''y + c''z = d''$ $a'''x + b'''y + c'''z = d'''$		
	for some arbitrary coefficients a', b', c', d', a", b", c", d", a"', b"', c" and d".		
	When is the x, y, z solution unique assuming that d', d' and d'' are not all zero?		
	b) How can there be no x, y, z solution or infinitely many x, y, z solutions depending on the coefficients? Briefly explain the general situation.	5	
7.	a) What are the general y(x) and z(x) solutions for $dy/dx + x = 0$ and $d^2z/dx^2 + x = 0$?	5	
	b) What are the general $u(x)$ and $v(x)$ solutions for $du/dx + u = 0$ and $d^2v/dx^2 + v = 0$?	5	
8.	a) What is the geometrical interpretation of the scalar or dot product of two vectors? Illustrate with simple vectors.	5	
	b) What is the geometrical interpretation of the vector or cross product of two vectors? Illustrate with simple vectors.	5	
9.	a) What are symmetric and skew symmetric matrices? Give simple examples.	5	
	b) What are orthogonal and unitary matrices? Give simple examples.	5	
10.	a) What is a right-angle spherical triangle? What is the simplest formula for its area?	5	
	b) What is the area of a spherical triangle in terms of the angular sides?	5	
	Total Marks:	100	