CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

SCHEDULE I / ITEM 1 MATHEMATICS

March 2009

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted by the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

	This examination consists of 10 questions on one page.	<u>Marks</u>	
<u>Q. No</u>	<u>Time: 3 hours</u>	Value	Earnee
1	a) Given a simple function $f(x)$ over the real line Υ , what does $f^{(2)}(x) = d^2 f(x)/dx^2$ correspond to? Illustrate graphically $f^{(2)}(x) = 0$, $f^{(2)}(x) < 0$ and $f^{(2)}(x) > 0$.	5	
	b) For the same simple function $f(x)$ over the real line Υ , what does $f^{(3)}(x) = d^3 f(x)/dx^3$ correspond to? Using the previous example, illustrate graphically where $f^{(3)}(x) = 0$.	5	
2	a) Given the functions $f(x) = e^x$ and $g(x) = \log_e x$, what are $f(g(x))$ and $g(f(x))$?	5	
	b) For the previous functions $f(x)$ and $g(x)$, what is $g(x)$ called in terms of $f(x)$?	5	
3	a) What is the usual interpretation of the definite integral $\int_0^{\pi} \sin x dx$ over the finite interval $[0,\pi]$?	5	
-	b) Approximate this integral using a simple quadrature over a partition of $[0,\pi]$.	5	
4	a) Using Cartesian coordinates, set up the integral for the volume of the unit sphere at the origin of Υ^3 .	5	
	b) Using (spherical) polar coordinates, set up the integral for the volume of the unit sphere at the origin of Υ^3 .	5	
5	a) How can you justify the divergence in $\sum_{n=1}^{\infty} n^{-1} = 1 + 1/2 + 1/3 + = \infty$?	5	
	b) Expand $(1 + x)^{-1}$ as a power series in x. Does the series converge for $x = 1$?	5	
6	a) Given a function $f(x,y,z) = e^{xyz}$ in Υ^3 , what is its total derivative $df(x, y, z)$?	5	
	b) For the same function $f(x,y,z) = e^{xyz}$ in Υ^3 , what are its partial derivatives?	5	
7	a) Complex numbers are common when solving quadratic equations. Explain with examples.	5	
	b) What are the real and imaginary parts of sin z for a complex variable z?	5	
8	a) Given two vectors such as $\mathbf{u} = (1, 2, 3)^{T}$ and $\mathbf{v} = (4, 5, 6)^{T}$, what is the angle between them?	5	
	b) How can the vectors u and v be easily checked for being orthogonal ?	5	
9	a) Given a square matrix A, what are its powers A^2 and A^3 ? Give simple examples.	5	
	b) For a rectangular matrix B, can B^2 be defined? Illustrate with simple examples.	5	
10	a) For a square matrix A, how are its eigen values defined? Illustrate with a simple example.	5	
	b) For a rectangular matrix B, how are its singular values defined? Illustrate with a simple example.	5	
	Total Marks	: 100	