CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C2 - LEAST SQUARES ESTIMATION & DATA ANALYSIS October 2016

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note:	This examination consists of 8 questions on 3 pages.					
<u>Q. No</u>	<u>Time: 3 hours</u>	Value	Earned			
1.	 Explain the difference of the following terms: a) Precision and Accuracy b) Standard Deviation and Root Mean Square Error c) Covariance and Correlation Coefficient d) Redundancy of a linear system and redundancy number e) Type I and Type II Errors in statistical testing 	15				
2.	Given the cofactor matrix Q of the horizontal coordinates (x, y) of a survey station and the unit variance $\sigma_0^2 = 2 \ cm^2$, calculate the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $Q = \begin{bmatrix} 5.32 & 6.02\\ 6.02 & 8.38 \end{bmatrix}$	10				
3.	Given the following mathematical model $f(\ell, x) = 0$ C_{ℓ} C_{x} where f is the vector of mathematical models, x is the vector of unknown parameters and C_{x} is its variance matrix, ℓ is the vector of observations and C_{ℓ} is its variance matrix. a) Linearize the mathematical model b) Formulate the variation function c) Derive the least squares normal equation d) Derive the least squares solution of the unknown parameters	15				
4.	Given the variance-covariance matrix of the measurement vector $\ell = \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix}$: $C_{\ell} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$ and two functions of $\ell : x = \ell_1 + \ell_2$ and $y = 3\ell_1$, determine $C_{xy}, C_{x\ell}, C_{y\ell}$	10				

5.	times with different prec	isions. The distance m	s been independently me easurements and their we ghted mean of the distance $\begin{array}{r} \hline \\ \hline $	eights are	10	
6.	Angle α β γ Perform least squares ad a) Conditional equation	$\frac{\text{Measurement}}{104^{\circ}38'56''}$ $\frac{113^{\circ}17'35''}{142^{\circ}03'14''}$ $\frac{\alpha}{\gamma} \beta$	stment)	ations:	25	
7.	Given the sample unit va $\hat{\sigma}_0^2 = 0.55 \text{ cm}^2$ with a d $\hat{\sigma}_0 = 0.44 \text{ cm}$, conduct acceptable with a signified The critical values that following table: α $\chi^2_{\alpha, \nu=3}$ where $\chi^2_{\alpha, \nu=3}$ is determined	d deviation t result is	5			

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8.	computed a standard Given tha conduct fu	from a le deviation $\hat{\mathbf{r}} = \begin{bmatrix} 4 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	ast square of $\sigma_0 = 1$ 2 -3 15 1 1 7 3 -1 -2 3 test has 1 s to identi	s adjustme .5 mm: 10] 3 - 2 -1 3 4 -1 -1 2 been rejectify which	ent using ((ted with observation	independe (mm) (mm ²) a significa on(s) may	nt observa ince level contain a	$Q_{\hat{r}}$ were ations with of $\alpha = 0.4$ n outlier. T the followi	04, The	
		$\frac{\alpha}{K_{\alpha}}$	0.001 3.09	0.002	0.003	0.004 2.65	0.005	0.01 2.33	0.05		
		where K_{α} is determined by the equation $\alpha = \int_{K_{\alpha}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$.									
where K_{α} is determined by the equation $\alpha = \int_{K_{\alpha}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$.								,	Total Mar	ks: 100	