CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C2 - LEAST SQUARES ESTIMATION & DATA ANALYSIS October 2015

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note:	This examination consists of 9 questions on 3 pages.	Ma	r <u>ks</u>
<u>Q. No</u>	Time: 3 hours	Value	Earned
1.	 Explain briefly the difference between: a) Precision and accuracy; b) Type I and Type II errors in statistical testing; c) Statistically independent and uncorrelated; d) Standard deviation and root mean square error. 	10	
2.	 Given the following mathematical model f(ℓ, x) = 0 C_ℓ C_x where f is the vector of mathematical models, x is the vector of unknown parameters and C_x is its variance matrix, ℓ is the vector of observations and C_ℓ is its variance matrix. a) Derive the least squares normal equation. b) Derive the least squares solution of the unknown parameters and their variance-covariance matrix. 	15	
3.	Sides <i>a</i> and <i>b</i> are measured once each with different precisions as follows: $l = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 10 \\ 20 \end{bmatrix} m$ $C_{l} = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} cm^{2}$ a) Estimate the areas of triangle ABD and the circle shown inside the rectangle. b) Estimate the standard deviations of the quantities computed in Part a). c) Estimate the correlation between the triangle and the circle estimates. d) Discuss the nature of the correlations computed in Part c).	15	
4.	The distance between Point A and Point B has been independently measured 5 times with the same precision using a distance measuring device and the standard deviation of the obtained mean distance is 1.58cm. Determine the precision of the distance measurement. $A \leftarrow B$	5	
Exam (C2 - Least Squares 2015 10	1 of 3	

Exam C2 - Least Squares 2015 10

5.	Given the variance-of of a survey station, orientation of the sta	determine the sem	ni-major, semi-massociated with the	ninor axis and the	
	c) the estimated	a conditional lea the following quant residuals; covariance matrix o observations; covariance matrix o	ast squares adju tities: of the estimated r	ustment. You are esiduals;	
6.	Angle α	Measurement 134°38'56"	Standard 1		15
	β	83°17'35"	9.9)"	
	γ	142°03'14"	4.3	3"	
		~ α γ	β		
7.	c) the estimated	required to compute	the following quantum f the estimated p α and β ;	uantities: parameters;	10
8.	Given the sample un network $\hat{\sigma}_0^2 = 0.55$ cm standard deviation of adjustment result is critical values that is following table: α $\chi^2_{\alpha, \nu=3}$	m^2 with a degree $\sigma_0 = 0.44 \text{ cm}$, conduction constants of a comparison of the second	of freedom $v =$ act a statistical to significance leve	3 and the a-priori est to decide if the el of $\alpha = 5\%$. The	
	where $\chi^2_{\alpha, \nu=3}$ is determined	rmined by the equat	tion $\alpha = \int_{\chi^2_{\alpha, \nu=3}}^{\infty} \chi^2$	$(\mathbf{x})\mathbf{d}\mathbf{x}$.	

	measurements a	re given in the	tollowing table	3:		
	d_1	d_2	d ₃	d4	d5	
	200.02n	n 199.93m	199.98m	199.99m	200.01	
)	significantly dif	ferent from the ue that might b	calibrated dist	ance.	ed distance is provided in the	10
9.		tα				
			t	α		10
	Degree of freedom	t _{0.90}	t t _{0.95}	α t _{0.975}	t _{0.99}	10
	•	t _{0.90} 3.08			t _{0.99} 31.8	10
	freedom		t _{0.95}	t _{0.975}		10
	freedom 1	3.08	t _{0.95} 6.31	t _{0.975} 12.7	31.8	10
	freedom 1 2	3.08 1.89	t _{0.95} 6.31 2.92	t _{0.975} 12.7 4.30	31.8 6.96	10