CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C2 - LEAST SQUARES ESTIMATION & DATA ANALYSIS October 2014

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

	This examination consists of 9 questions on 3 pages. <u>Time: 3 hours</u>	Ma	
<u>Q. No</u>	Briefly explain the following terms: a) Precision b) Root mean square error c) Internal reliability d) Redundancy of a linear system e) Correlation coefficient	<u>Value</u> 10	Earned
2	Prove that $\frac{\sigma}{\sqrt{n}}$ is the standard deviation of the mean value $\overline{x} = \frac{\sum_{i=1}^{n} \ell_i}{n}$. Each measurement ℓ_i is made with a standard deviation σ .	10	
3.	Sides <i>a</i> and <i>b</i> are measured once each with different precisions as follows: $I = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 10 \\ 20 \end{bmatrix} m$ $A = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} cm^{2}$ $B = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} cm^{2}$ $B = \begin{bmatrix} 1 & $	15	
4.	 Given the following over-determined linear system: y = Ax C_y where y is the vector of observations and C_y is its variance-covariance matrix, x is the vector of unknown parameters, A is the design matrix. a) Derive the least squares normal equation. b) Derive the least squares solution of the unknown parameters and their variance-covariance matrix. 	10	

5.	Given the variance of a survey station orientation of the s $C_{x} = \begin{bmatrix} 0.000532\\ 0.000602 \end{bmatrix}$, determine tandard er	the sem for ellips	i-major, s	emi-min	or axis and	• •	10	
	Given the angle modeviations, conduct required to compute a) the estimate b) the varianc c) the estimate d) the varianc e) the estimate	t a condition te the follo ed residual e-covariand ed observa e-covariand	onal least wing qua s ce matrix tions ce matrix	squares antities:	adjustme	nt. You are residuals			
	Angle	Measu				Deviation			
6.	α	134°38'		6.				15	
	β γ	83°17'3 142°03'		9.					
	α γ Conduct a paramet Problem 6. You are			<i>,</i>		-	en in		
7.	a) the estimateb) the variancec) the estimated) the variance	ed paramet e-covariance ed differen	ers ce matrix ce betwe	t of the est en α and	timated j β	parameters		10	
	Given the sample of network $\hat{\sigma}_0^2 = 0.55$ standard deviation adjustment result i critical values that following table:	cm^2 with $\sigma_0 = 0.44$ s acceptable	a degree cm , con e with a	of freedo duct a sta significar	m $v = 3$ tistical tence level	and the a-presence of $\alpha = 5\%$.	riori if the The		
8.	α	0.001	0.01	0.025	0.05	0.10		10	
	$\chi^2_{\alpha, \nu=3}$	16.26	11.34	9.35	7.82	6.25			
	where $\chi^2_{\alpha, \nu=3}$ is de	termined b	y the equ	tation α =	$= \int_{\chi^2_{\alpha, \upsilon=3}}^{\infty} \chi^2$	$^{2}(\mathbf{x})d\mathbf{x}$.			

d1	d2	d3	d4	d5					
200.0	2m 199.93	8m 199.98n	n 199.99m	200.01					
significantly different from the calibrated distance. The critical value that might be required in the testing is provided in the following table:									
	t _α	t _α							
Degree of freedom	t _{0.90}	t _{0.95}	t _{0.975}	t _{0.99}					
1	3.08	6.31	12.7	31.8					
2	1.89	2.92	4.30	6.96					
3	1.64	2.35	3.18	4.54					
4	1.53	2.13	2.78	3.75					
4			2.57	3.36					