CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C-2 LEAST SQUARES ESTIMATION & DATA ANALYSIS October 2013

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note: This examination consists of 8 questions on 3 p	
m	

Q. No	Time: 3 hours				
1.	Define and explain briefly the following: a) Standard deviation b) Covariance c) Correlation coefficient d) Type II error e) Root mean square error f) Internal reliability	2.5 2.5 2.5 2.5 2.5 2.5 2.5			
2.	Given the cofactor matrix Q of the horizontal coordinate (x, y) of a survey station and the unit variance $\hat{\sigma}_0^2 = 2 \text{ cm}^2$, calculate the semi-major, semi-minor axis, and the orientation of the standard error ellipse associated with this station. $Q = \begin{bmatrix} 5.32 & 6.02 \\ 6.02 & 8.38 \end{bmatrix}$	10			
3.	Given a leveling network below where A and B are known points, h_1 and h_2 are two height difference measurements with standard deviation of σ_1 and σ_2 , respectively and $\sigma_1 = 2$ σ_2 . Determine the value of σ_1 and σ_2 so that the standard deviation of the height solution at point P using least squares adjustment is equal to 2mm.				
4.	Given the variance-covariance matrix of the measurement vector $\ell = \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix}$: $C_\ell = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$ and two functions of ℓ : $x = \ell_1 + \ell_2$ and $y = 3\ell_1$, determine C_{xy} , $C_{x\ell}$, $C_{y\ell}$	10			

	Given the following mathematical model							
	$f(\ell, x) = 0$ C_{ℓ} C_{x}							
	where f is the vector of mathematical models, x is the vector of unknown							
5.	parameters and C_x is its variance matrix, ℓ is the vector of observations							
<i>J</i> .	and C_{ℓ} is its variance matrix.							
	a) Linearize the mathematical model							
	b) Formulate the variation function							
	Given the angle measurements at a station along with their standard							
	deviations:							
	Angle Measurement Standard Deviation							
	α 134°38'56" 6.7"							
	β 83°17'35" 9.9"							
	γ 142°03'14" 4.3"							
	7							
6.	α							
0.	β							
	γ							
	\nearrow							
	Perform least squares adjustment to the problem using							
		12.5						
	a) Conditional equations (conditional adjustment)							
	b) Observation equations (parametric adjustment)							
	Given the sample unit variance obtained from the adjustment of a geodetic							
	network $\hat{\sigma}_0^2 = 0.55 \text{ cm}^2$ with a degree of freedom $v = 3$ and the a-priori							
	standard deviation $\sigma_0 = 0.44$ cm, conduct a statistical test to decide if the adjustment result is acceptable with a significance level of $\alpha = 5\%$.							
	The critical values that might be required in the testing are provided in the							
7.	following table:							
/.		10						
	α 0.001 0.01 0.025 0.05 0.10							
	$\chi^{2}_{\alpha, \nu=3}$ 16.26 11.34 9.35 7.82 6.25							
	where $\chi^2_{\alpha, \nu=3}$ is determined by the equation $\alpha = \int_{\chi^2_{\alpha, \nu=3}}^{\infty} \chi^2(x) dx$.							
	$\chi_{\alpha, \nu=3}$ is determined by the equation $\chi_{\alpha, \nu=3}$ $\chi_{\alpha, \nu=3}$							

con	The following residual vector $\hat{\mathbf{r}}$ and estimated cofactor matrix $Q_{\hat{\mathbf{r}}}$ were computed from a least squares adjustment using independent observations with a standard deviation of σ_0 = 1.5 mm:									
	$\hat{\mathbf{r}} = \begin{bmatrix} 4 & 2 & -3 & 10 \end{bmatrix}$ (mm)									
		$Q_{\hat{r}} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$	15 1 1 7 3 -1 -2 3	$ \begin{array}{rrr} 3 & -2 \\ -1 & 3 \\ 4 & -1 \\ -1 & 2 \end{array} $		mm ²)				
0.0 out	Given that a global test has been rejected with a significance level of $\alpha = 0.04$, conduct further tests to identify which observation(s) may contain an outlier. The critical values that might be required in the testing are provided in the following table:									
	α	0.001	0.002	0.003	0.004	0.005	0.01	0.05		
	Kα	3.09	2.88	2.75	2.65	2.58	2.33	1.64		
wh	ere K _o	, is deterr	nined by	the equat	ion $\alpha = \int$	$K_{\alpha} \frac{1}{\sqrt{2\pi}} \epsilon$	$e^{-x^2/2}dx$			
							ŗ	Total Mark	ks: 100	