CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C2 – LEAST SQUATRES ESTIMATION & DATA ANALYSIS March 2018

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note: This examination consists of 9 questions on 3 pages

Note:	This examination consists of 9 questions on 3 pages.	<u>Mai</u>	<u>rks</u>
Q. No	Time: 3 hours	<u>Value</u>	Earned
1.	Define or explain briefly the following terms: a) Standard deviation b) Precision c) Accuracy d) Redundancy of a linear system e) Type II errors in statistical testing	10	
2.	Sides a and b are measured once each as follows: $I = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 10 \\ 20 \end{bmatrix} \text{m}$ $C_I = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \text{cm}^2$ A A B (a) Estimate the areas of triangle ABD and the circle shown inside the rectangle. (b) Estimate the standard deviations of the quantities computed in Part (a). (c) Estimate the correlation between the triangle and the circle estimates. (d) Discuss the nature of the correlations computed in Part (c).	15	
3.	Consider that the shape of an object is defined by the following equation: $z_i = ax_i^3 + b\sin(y_i)$ where z_i, x_i, y_i are observations with standard deviations $\sigma_{z_i}, \sigma_{x_i}, \sigma_{y_i}$, and a and b are parameters to be estimated. Assume $i = 1, 2, 3$. Write the linearized form of this model and derive the required matrices and vectors.	10	
4.	Given the variance-covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $C_x = \begin{bmatrix} 0.000532 & 0.000602 \\ 0.000602 & 0.000838 \end{bmatrix} \text{ m}^2$	10	

Marks

5.		that $\frac{\sigma}{\sqrt{n}}$ is the rement λ_i is					$=\frac{\sum_{i=1}^{n}\lambda_{i}}{n}, e$	ach 10	
	deviation require (a) (b) (c) (d)	the angle mons, conducted to compute the estimated the variance-the variance-the estimated the variance-the estimated the variance-the estimated the conducted the conduct	t a condi the follow I residuals covarianc I observati covarianc	tional leasiving quantite matrix of ons e matrix of	t squares ies:	adjustmer	nt. You a		
6.		Angle	Meas	urement	Stand	ard Deviat	tion	15	
0.		α		°38'56"		6.7"		13	
		β	1	217'35"		9.9"			
		γ	142	°03'14"		4.3"			
			<	γ	β				
7.	Conduct a parametric least squares adjustment to the same data given in Problem 6. You are required to compute the following quantities: a) the estimated parameters b) the variance-covariance matrix of the estimated parameters c) the estimated difference between α and β d) the variance of the estimated difference between α and β					in 10			
8.	Given the sample unit variance obtained from the adjustment of a geodetic network $\hat{\sigma}_0^2 = 0.55 cm^2$ with a degree of freedom $\upsilon = 3$ and the a-priori standard deviation $\sigma_0 = 0.44 cm$, conduct a statistic test to decide if the adjustment result is acceptable with a significance level of $\alpha = 5\%$. Provide the major test steps and explain the conclusion. The critical values that might be required in the testing are provided in the following table:							the vide	
		α	0.001	0.01	0.025	0.05	0.10		
		$\chi^2_{\alpha, \nu=3}$	16.26	11.34	9.35	7.82	6.25		

	-		-	ion. The sample lated from the	
$\overline{\mathbf{x}} = 200.5$	m	s = 0.05m			
different from t	he calibrated di	stance.		e is significantly provided in the	
	iae mai migni	oc required in	the testing is	provided in the	
following table	:				
	:	t	α		10
	t _{0.90}	t _{0.95}	α t _{0.975}	t _{0.99}	10
Degree of				t _{0.99} 31.8	10
Degree of freedom	t _{0.90}	t _{0.95}	t _{0.975}		10
Degree of freedom	t _{0.90} 3.08	t _{0.95}	t _{0.975}	31.8	10
Degree of freedom 1 2	t _{0.90} 3.08 1.89	t _{0.95} 6.31 2.92	t _{0.975} 12.7 4.30	31.8	10