CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C2 - LEAST SQUARES ESTIMATION & DATA ANALYSIS March 2016

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note:	This examination consists of 10 questions on 3 pages.		<u>Marks</u>	
<u>Q. No</u>	Time: 3 hours	Value	Earned	
	Briefly explain the following terms:			
	a) Precision			
	b) Root mean square error			

1.	 b) Root mean square error c) Internal reliability d) Redundancy of a linear system e) Correlation coefficient 	10	
2.	Given a leveling network below where A and B are known points, h_1 and h_2 are two height difference measurements with standard deviation of σ_1 and σ_2 , respectively and $\sigma_1 = 2 \sigma_2$. Determine the value of σ_1 and σ_2 so that the standard deviation of the height solution at P using least squares adjustment is equal to 2cm. $ \frac{h_1}{A} \xrightarrow{h_2} B $	10	
3.	Given the following mathematical model $f(\ell, x) = 0 C_{\ell} C_{x}$ where f is the vector of mathematical models, x is the vector of unknown parameters and C_{x} is its variance matrix, ℓ is the vector of observations and C_{ℓ} is its variance matrix a) Linearize the mathematical model b) Formulate the variation function c) Derive the least squares normal equation d) Derive the least squares solution of the unknown parameters.	15	

4.	•	e standard deviation of made with the same sta	the mean value $\overline{x} = \frac{\sum_{i=1}^{n} \ell_i}{n}$, each ndard deviation σ .	10	
5.	a survey station, det	ermine the semi-major, andard error ellipse asso	e horizontal coordinates (x, y) of semi-minor axis and the ociated with this station.	10	
6.	 deviations, conduct required to compute a) the estimate b) the variance c) the estimate d) the variance 	a conditional least squa the following quantitie d residuals -covariance matrix of th d observations		15	
7.	Problem 6. You area) the estimatedb) the variancec) the estimated	required to compute the d parameters	te estimated parameters and β	10	
8.	differences and 40 u which method of ad		ork with 100 observed height thematical equations to explain conditional) you will	5	

9.	$C_{\ell} = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \end{bmatrix}$ and the function	$\begin{bmatrix} 1\\3\\2\\3 \end{bmatrix}$		neasurement v	ector $\ell = \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix}$]: 5
	An angle has be and the observed level of confiden- true angle value $\boxed{\frac{\alpha_1}{45^\circ 00'05''}}$ The critical value	d values are given ce if the samp $45^{\circ}00'00''$. α_2 $45^{\circ}00'10''$	ven in the follo le mean is sign α_3 $44^{\circ}59'58''$	wing table. Te ificantly differ α_4 $45^{\circ}00'07"$	st at the 95% rent from the $\frac{\alpha_5}{44^{\circ}59'54''}$	
	following table:			_	I	
10.	following table:		t	α		
10.	following table: Degree of freedom	t _{0.90}	t t _{0.95}	α t _{0.975}	t _{0.99}	
10.	Degree of					
10.	Degree of freedom	t _{0.90}	t _{0.95}	t _{0.975}	t _{0.99}	
10.	Degree of freedom	t _{0.90} 3.08	t _{0.95} 6.31	t _{0.975} 12.7	t _{0.99} 31.8	
10.	Degree of freedom 1 2	t _{0.90} 3.08 1.89	t _{0.95} 6.31 2.92	t _{0.975} 12.7 4.30	t _{0.99} 31.8 6.96	