CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C2 - LEAST SQUARES ESTIMATION & DATA ANALYSIS March 2015

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note:	This examination consists of 9 questions on 3 pages.			
<u>Q. No</u>	Time: 3 hours	Value	Earned	
1.	 Briefly explain the following terms: a) Precision and accuracy b) Type I and Type II errors in statistical testing c) Statistically independent and uncorrelated d) Standard deviation and root mean square error 	10		
2.	 Given the following mathematical model f(ℓ, x) = 0 C_ℓ C_x where f is the vector of mathematical models, x is the vector of unknown parameters and C_x is its variance matrix, ℓ is the vector of observations and C_ℓ is its variance matrix a) Derive the least squares normal equation. b) Derive the least squares solution of the unknown parameters and their variance-covariance matrix. 			
3.	Given a leveling network below where A and B are known points, h_1 and h_2 are two height difference measurements with standard deviation of σ_1 and σ_2 , respectively and $\sigma_1 = 2 \sigma_2$. Determine the value of σ_1 and σ_2 so that the standard deviation of the height solution at P using least squares adjustment is equal to 2mm. $ \frac{A}{P} \xrightarrow{h_1} \xrightarrow{h_2} \xrightarrow{B} B $	10		

	Given the variance-covariance matrix of the measurement vector $\ell = \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix}$:							
4.	$\mathbf{C}_{\ell} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$							
	and the function $x = \ell_1 + \ell_2$, determine C_x .							
	 Given the angle measurements at a station along with their standard deviations, conduct a conditional least squares adjustment. You are required to compute the following quantities: a) the estimated residuals b) the variance-covariance matrix of the estimated residuals c) the estimated observations d) the variance-covariance matrix of the estimated observations e) the estimated variance factor. 							
5.	Angle	Measurement	Standard Deviation	15				
	α	104°38'56"	6.7"					
	β	<u>33°17'35"</u> 42°03'14"	9.9"					
	γ	42 03 14	4.3"					
	β							
6.	 Conduct a parametric least squares adjustment to the same data given in Problem 5. You are required to compute the following quantities: a) the estimated parameters b) the variance-covariance matrix of the estimated parameters c) the estimated difference between α and β d) the variance of the estimated difference between α and β. 							
7.	Given the variance-covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $C_{x} = \begin{bmatrix} 0.0484 & 0.0246\\ 0.0246 & 0.0196 \end{bmatrix} m^{2}$							

	A distance has been independently measured 4 times and its sample unit variance obtained from the adjustment $\hat{\sigma}_0^2$ is equal to 1.44 cm. If the appriori standard deviation σ_0 is 1.0 cm, conduct a statistic test to decide if the adjustment result is acceptable with a significance level of $\alpha = 5\%$. Show all work including the formulas used and explain all steps. The critical values that might be required in the testing are provided in the following table:					a- if e e	
8.	(α 0.001	0.01 0.0	025 0.05	0.10	10	
					6.0.7		
	χ^2_{α} ,	υ=3	11.34 9.	35 7.82	6.25		
	where $\chi^2_{\alpha, \nu=3}$ is determined by the equation $\alpha = \int_{\chi^2_{\alpha, \nu=3}}^{\infty} \chi^2(x) dx$ and ν						
	is the degree of			$\lambda \alpha, v=3$			
	An angle has been measured independently 5 times with the same precision and the observed values are given in the following table. Test at the 95% level of confidence if the sample mean is significantly different from the true angle value 45°00'00". Show all work including the formulas used and explain all steps. $\alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \alpha_4 \qquad \alpha_5$					% е	
			- 3	4			
	45°00'05"	45°00'10"	44°59'58"	45°00'07"	44°59'54"		
9.	The critical value that might be required in the testing is provided in the following table:					e 15	
			t	α			
	Degree of freedom	t _{0.90}	t _{0.95}	t _{0.975}	t _{0.99}		
	1	3.08	6.31	12.7	31.8		
	2	1.89	2.92	4.30	6.96		
	3	1.64	2.35	3.18	4.54		
	4	1.53	2.13	2.78	3.75		
	5	1.48	2.01	2.57	3.36		
					Total Marks	s: 100	