CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C-2 LEAST SQUARES ESTIMATION & DATA ANALYSIS

October 2012

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note:	This examination consists of 6 questions on 3 pages.	<u>Marks</u>	
<u>Q. No</u>	Time: 3 hours	Value	Earned
1.	 Briefly explain the following terms (2 marks each) a) Precision b) Accuracy c) Root mean square error d) Correlation coefficient e) Redundancy of a linear system 	10	
2.	 Given the following mathematical models f(ℓ, x) = 0 C_ℓ C_x where f is the vector of the mathematical model, x is the vector of unknown parameters and C_x is its variance matrix, ℓ is the vector of observations and C_ℓ is its variance matrix. a) Provide the linearized form of the given mathematical model. b) Formulate the variation function. c) Derive the least squares solution of the unknown parameters. 	5 5 10	
3.	Given the variance-covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $C_x = \begin{bmatrix} 0.0484 & 0.0246\\ 0.0246 & 0.0196 \end{bmatrix} m^2$	10	

	Given two distance measurements that are independent and have standard deviations $\sigma_1 = 0.20$ m and $\sigma_2 = 0.15$ m, respectively,								1		
4.	a) Calculate the standard deviations of the sum and difference of the two measurements								7.5		
	b) Calculate the correlation between the sum and the difference.							7.5			
	The following residual vector \hat{v} and estimated covariance matrix $C_{\hat{v}}$ were computed from a least squares adjustment using five independent observations with a standard deviation of $\sigma = 2$ mm and a degree of freedom $v = 2$: $\hat{v} = \begin{bmatrix} 15 & 2 & -3 & 10 \end{bmatrix}$ (mm)										
	$\mathbf{C}_{\hat{\mathbf{v}}} = \begin{bmatrix} 15 & 1 & 3 & -2 \\ 1 & 7 & -1 & 3 \\ 3 & -1 & 4 & -1 \\ -2 & 3 & -1 & 2 \end{bmatrix} \qquad (\mathrm{mm}^2)$										
	Given $\alpha = 0.02$,										
	a) Conduct a global test to decide if there exists any outlier or not.						5				
5.	b) Conduct local tests to locate possible outlier(s).						10				
	The critical values that might be required in the testing are provided in the following tables:										
			α	0.001	0.01	0.02	0.05	0.10	7		
			$\chi^2_{\alpha, v=2}$	13.82	9.21	7.82	5.99	4.61			
			<u> </u>			I	I	1			
		α	0.001	0.002	0.003	0.004	0.005	0.01	0.05		
		Kα	3.09	2.88	2.75	2.65	2.58	2.33	1.64		
	where $\chi^2_{\alpha, \nu=2}$ is determined by the equation $\alpha = \int_{\chi^2_{\alpha,\nu=2}}^{\infty} \chi^2(x) dx$ and K_{α} is										
	determined by the equation $\alpha = \int_{K_{\alpha}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$.										

	Given the angle measurements at a station along with their standard deviations:								
	Angle								
	α	134°38′56″	6.7″						
	β	83°17′35″	9.9″						
	γ	142°03′14″	4.3″						
6.	Apply the least squa	res adjustment to the p	3 problem using						
	a) Conditional equations (conditional adjustment).								
	b) Observation equations (parametric adjustment).								
	Total Marks:								