CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C-2 LEAST SQUARES ESTIMATION & DATA ANALYSIS October 2011

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted by the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note	: This examination consists of 8 questions on 3 pages.	<u>Marks</u>	
Q. No	<u>Time: 3 hours</u>	<u>Value</u>	Earned
1.	Define and briefly explain the following terms a) Standard deviation b) Root mean square error c) Correlation coefficient d) Redundancy of a linear system e) Type II error in statistical testing	10	
2.	Given the cofactor matrix Q of the horizontal coordinate (x, y) of a survey station and the unit variance $\hat{\sigma}_0^2 = 2 \text{cm}^2$, calculate the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $Q = \begin{bmatrix} 5.32 & 6.02 \\ 6.02 & 8.38 \end{bmatrix}$	10	
3.	Given the following mathematical model $f(\ell,x)=0 C_{\ell} C_{x}$ where f is the vector of mathematical models, x is the vector of unknown parameters and C_{x} is its variance matrix, ℓ is the vector of observations and C_{ℓ} is its variance matrix. a) Linearize the mathematical model b) Formulate the variation function c) Derive the least squares normal equation	15	

4.	Given a leveling network below where A and B are known points, h_1 and h_2 are two height difference measurements with standard deviation of σ_1 and σ_2 , respectively and $\sigma_1 = 2$ σ_2 . Determine the value of σ_1 and σ_2 so that the standard deviation of the height solution at P using least squares adjustment is equal to 2cm.	10	
5.	Given the angle measurements at a station along with their standard deviations:	25	
6.	Given the variance-covariance matrix of the measurement vector $\ell = \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix}$: $C_\ell = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$ and two functions of $\ell : x = \ell_1 + \ell_2$ and $y = 3\ell_1$, determine $C_{xy}, C_{x\ell}, C_{y\ell}$.	10	

7.	network standard adjustmenthe major	e sample unit $\hat{\sigma}_0^2 = 0.55 \text{cm}$ deviation σ_0 and result is accepted test steps and eal values that table: α $\chi^2_{\alpha, \ \nu=3}$	with a = 0.44 cr ceptable d explain	degree of m, conduction with a significant the conclusion.	of freedo act a stat gnificance usion.	om $v = 3$ tistic test e level of	and the to decide $\alpha = 5\%$	e a-priori de if the . Provide	10	
	where $\chi^2_{\alpha, \nu=3}$ is determined by the equation $\alpha=\int_{\chi^2_{\alpha, \nu=3}}^{\infty}\chi^2(x)dx$.									
	A baseline of calibrated length (μ) 200.0m is measured 5 times. Each measurement is independent and made with the same precision. The sample mean (\overline{x}) and sample standard deviation (s) are calculated from the measurements: $\overline{x} = 200.5m \qquad s = 0.05m$ Test at the 95% level of confidence if the measured distance is significantly different from the calibrated distance. Provide the major test steps and explain the conclusion.									
8.	The critical value that might be required in the testing is provided in the following table:						10			
	Degree of t_{α} t_{α} t_{α} t_{α}									
	freedo	(1)	90	t _{0.95}		t _{0.975}	t _{0.}	99		
	1	3.	08	6.31		12.7	31	.8		
	2		89	2.92		4.30	6.9			
	3		64	2.35		3.18	4.5			
	4		53	2.13		2.78	3.7			
	5	1.	48	2.01		2.57	3.3		100	
		Total Marks:							100	