CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C-2 LEAST SQUARES ESTIMATION & DATA ANALYSIS October 2010

Note: This examination consists of 8 questions on 3 pages.

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct. <u>Marks</u>

<u>Q. No</u>	<u>Time: 3 hours</u>			
1.	 Define and explain briefly the following terms: a) Precision b) Accuracy c) Correlation coefficient d) Redundancy of a linear system e) Type II errors in statistical testing 	10		
2.	Given the leveling network below where A and B are known points, h_1 and h_2 are two height difference measurements with standard deviation of σ_1 and σ_2 , respectively and $\sigma_1 = 2 \sigma_2$. Determine the value of σ_1 and σ_2 so that the standard deviation of the height solution at P using least squares adjustment is equal to 2cm. $ \frac{h_1}{A} \xrightarrow{h_1} \xrightarrow{h_2} \xrightarrow{B} B $	10		
3.	Given the following mathematical model $f(\ell, x) = 0$ C_{ℓ} C_{x} where f is the vector of mathematical models, x is the vector of unknown parameters and C_{x} is its variance matrix, ℓ is the vector of observations and C_{ℓ} is its variance matrix. a) Linearize the mathematical model. b) Formulate the variation function. c) Derive the least squares normal equation.	15		

4.	Given the variance-covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $C_{x} = \begin{bmatrix} 0.000532 & 0.000602\\ 0.000602 & 0.000838 \end{bmatrix} m^{2}$	10					
5.	Given the variance-covariance matrix of the measurement vector $\ell = \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix}$: $C_{\ell} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$ and two functions of $\ell : x = \ell_1 + \ell_2$ and $y = 3\ell_1$, determine $C_{xy}, C_{x\ell}, C_{y\ell}$						
6.	Given the sample unit variance obtained from the adjustment of a geodetic network $\hat{\sigma}_0^2 = 0.55 \text{ cm}^2$ with a degree of freedom $\upsilon = 3$ and the a-priori standard deviation $\sigma_0 = 0.44 \text{ cm}$, conduct a statistic test to decide if the adjustment result is acceptable with a significance level of $\alpha = 5\%$. Provide the major test steps and explain the conclusion. The critical values that might be required in the testing are provided in the following table: $\frac{\alpha}{\chi^2_{\alpha, \ \upsilon = 3}} = \frac{0.001}{16.26} = \frac{11.34}{11.34} = 9.35 = 7.82 = 6.25$						
	where $\chi^2_{\alpha, \nu=3}$ is determined by the equation $\alpha = \int_{\chi^2_{\alpha, \nu=3}}^{\infty} \chi^2(x) dx$.						

7.	A baseline of calibrated length (μ) 200.0m is measured 5 times. Each measurement is independent and made with the same precision. The sample mean (\overline{x}) and sample standard deviation (s) are calculated from the measurements: $\overline{x} = 200.5m$ s = 0.05m Test at the 95% level of confidence if the measured distance is significantly different from the calibrated distance. The critical value that might be required in the testing is provided in the following table:						10	
	Degree	of	t _{0.90}	t _{0.95}	t_{α}	t _{0.99}		
	freedor	m						
	1		3.08	6.31	12.7	31.8		
	2		1.89	2.92	4.30	6.96		
	3 4		3 1.64 4 1.53	2.35	3.18	4.54		
				2.13	2.13 2.78 3.75	3.75		
	5		1.48	2.01	2.57	3.36		
	Given the angle measurements at a station along with their standard deviations:							
	$\begin{array}{c} \textbf{Angle} \\ \alpha \\ \beta \\ \gamma \end{array}$		Measurement		Standard Deviation			
			<u>134°38′56″</u> 83°17'35″		0.7			
			142	¹⁷ 33 03'14"	4.3"			
8.	7							
	α β β						25	
	Perform least squares adjustment to the problem using							
	a) Conditional equations (conditional adjustment)b) Observation equations (parametric adjustment)							
						Total Marks•	100	