CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C-2 LEAST SQUARES ESTIMATION & DATA ANALYSIS

March 2013

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note:	This examination cons	<u>Marks</u>			
Q. No	<u>Time: 3 hours</u>			<u>Value</u>	Earned
1.	Explain briefly the d a) Precision and b) Type I and T c) Statistically i d) Standard dev	2.5 2.5 2.5 2.5 2.5			
2.	Given the following mathematical model $f(\ell,x)=0 C_{\ell} C_{x}$ where f is the vector of mathematical models, x is the vector of unknown parameters and C_{x} is its variance matrix, ℓ is the vector of observations and C_{ℓ} is its variance matrix. a) Linearize the mathematical model. b) Formulate the variation function. c) Derive the least squares solution of the unknown parameters.				
3.	The distance between times with the same standard deviation of precision of the distantantantantantantantantantantantantant	5			
4.	Given the angle medeviations:	Measurement 104°38'56" 33°17'35" 42°03'14"	gle along with their standard Standard Deviation 6.7" 9.9" 4.3"		
	Perform least squares adjustment to the problem using a) Conditional equations (conditional adjustment). b) Observation equations (parametric adjustment).				

	I							
5.	Given the variance-covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station.							
	$C_{x} = \begin{bmatrix} 0.000532 & 0.000602 \\ 0.000602 & 0.000838 \end{bmatrix} \text{ m}^{2}$							
	A distance has been independently measured 4 times and its sample unit variance obtained from the adjustment $\hat{\sigma}_0^2$ is equal to 1.44 cm. If the appriori standard deviation σ_0 is 1.0 cm, conduct a statistic test to decide if the adjustment result is acceptable with a significance level of $\alpha = 5\%$. The							
	critical values that might be required in the testing are provided in the following table:							
6.		α 0.001	0.01 0.0	0.05	0.10	10		
	χ^2_{α}	υ=3	11.34 9.3	7.82	6.25			
	where $\chi^2_{\alpha, \nu=3}$ is determined by the equation $\alpha = \int_{\chi^2_{\alpha, \nu=3}}^{\infty} \chi^2(x) dx$ and							
	υ is the degree of freedom.							
	An angle has been measured independently 5 times with the same precision and the observed values are given in the following table. Test at the 95% level of confidence if the sample mean is significantly different from the true angle value 45°00'00".							
	$lpha_{_1}$	α_2	$\alpha_{_3}$	$lpha_{_4}$	$lpha_{\scriptscriptstyle 5}$			
	45°00'05"	45°00'10''	44°59'58"	45°00'07"	44°59'54"			
7.	The critical value that might be required in the testing is provided in the following table:							
	t_{α}							
	Degree of freedom	t _{0.90}	t _{0.95}	t _{0.975}	t _{0.99}			
	1	3.08	6.31	12.7	31.8	_		
	2	1.89	2.92	4.30	6.96			
	3	1.64	2.35	3.18	4.54			
	4	1.53	2.13	2.78	3.75			
	5	1.48	2.01	2.57	3.36			

	Given the variance-covariance matrix of the measurement vector $\ell = \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix}$:		
8.	$\mathbf{C}_{\ell} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$	5	
	and the function $x = \ell_1 + \ell_2$, determine C_x .		
	Total Marks:	100	