ASSOCIATION OF CANADA LANDS SURVEYORS - BOARD OF EXAMINERS WESTERN CANADIAN BOARD OF EXAMINERS FOR LAND SURVEYORS ATLANTIC PROVINCES BOARD OF EXAMINERS FOR LAND SURVEYORS

SCHEDULE I / ITEM 2 LEAST SQUARES ESTIMATION AND DATA ANALYSIS

February 2001 (1990 Regulations)

This examination consists of __5_ questions on __2_ pages

(Closed Book)

Q. No. <u>Time: 3 hours</u> <u>Marks</u>

<u>V. No</u>	Time: 5 nours	<u> Wiai'ks</u>
1.	Perform a least squares adjustment of the following leveling network in which three height differences Δh_i , $i=1,2,3$ were observed.	
	Δh_1 $w = 5 cm$ Δh_3	
	The misclosure w is 5cm. Each Δh_i was measured with a variance of 2 cm ² .	25
2.	Given the following direct model for x and y as a function of ℓ_1 , ℓ_2 and ℓ_3 :	
	$ \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} 4 & -2 & 1 \\ 5 & 3 & -1 \end{bmatrix} \begin{bmatrix} \ell_1 \\ \ell_2 \\ \ell_3 \end{bmatrix} $	
	where the covariance matrix of the ℓ 's is $C_{\ell} = \begin{bmatrix} 4 & -2 & -1 \\ -2 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$	
	Compute the covariance matrix for x and y.	15
3.	Define and explain briefly the following terms: a) Statistical hypothesis b) Degree of freedom of a linear system c) Accuracy	
	d) Design matrixe) Precision	10

4.

Given the following mathematical models

$$\mathbf{f}_{1}(\ell_{1}, \mathbf{x}_{1}) = 0 \quad \mathbf{C}_{\ell_{1}} \quad \mathbf{C}_{x_{1}}$$
$$\mathbf{f}_{2}(\ell_{2}, \mathbf{x}_{1}, \mathbf{x}_{2}) = 0 \quad \mathbf{C}_{\ell_{2}} \quad \mathbf{C}_{x_{2}}$$

where f_1 and f_2 are vectors of mathematical models, x_1 and x_2 are vectors of unknown parameter, ℓ_1 and ℓ_2 are vectors of observations,

 $C_{\ell_1}, C_{\ell_2}, C_{x_1}$ and C_{x_2} are covariance matrices.

- a) Formulate the variation function.
- b) Derive the most expanded form of the least squares normal equation system.

25

The following residual vector $\hat{\mathbf{r}}$ and estimated covariance matrix $\mathbf{C}_{\hat{\mathbf{r}}}$ were computed from a least squares adjustment using five independent observations with a standard deviation of $\mathbf{s} = 2$ mm and a degree of freedom $\mathbf{u} = 2$:

$$\hat{\mathbf{r}} = \begin{bmatrix} 4 & 2 & -3 & 9 & -5 \end{bmatrix}$$
 (mm)
$$C_{\hat{\mathbf{r}}} = \begin{bmatrix} 9 & -1 & 2 & -3 & 5 \\ -1 & 1 & 1 & 3 & -2 \\ 2 & 1 & 4 & -2 & 3 \\ -3 & 3 & -2 & 4 & -1 \\ 5 & -2 & 3 & -1 & 16 \end{bmatrix}$$
 (mm²)

Given $\alpha = 0.01$,

- a) Conduct a global test to decide if there exists outlier or not.
- b) If the test in a) fails, conduct local tests to locate the outlier.

The critical values that might be required in the testing are provided in the following tables:

α	0.001	0.01	0.02	0.05	0.10
$c_{a, u}^2$	13.82	9.21	7.82	5.99	4.61

α	0.001	0.002	0.003	0.004	0.005	0.01	0.05
K_{α}	3.09	2.88	2.75	2.65	2.58	2.33	1.64

where $c_{a, u=2}^2$ is determined by the equation $a = \int_{c_{a, u=2}}^{\infty} c^2(x) dx$ and K_{α} is

determined by the equation $\alpha = \int_{K_a}^{\infty} \frac{1}{\sqrt{2p}} e^{-x^2/2} dx$.

25

100