SCHEDULE I / ITEM 2

March 2005

LEAST SQUARES ESTIMATION AND DATA ANALYSIS

Note:	This examination consists of _6_ questions on _2_ pages.	Marks				
Q. No	<u>Time: 3 hours</u>					
1	Define and briefly explain the following terms a) Precision b) Accuracy c) Correlation coefficient d) Redundancy of a linear system e) Unbiasedness of an estimator	10				
2	Given the following mathematical model $f(\ell,x)=0 C_\ell C_x$ where f is the vector of mathematical model, x is the vector of unknown parameter and C_x is its variance matrix, ℓ is the vector of observations and C_ℓ is its variance matrix. a) Formulate the variation function. b) Derive the least squares normal equation. c) Derive the least squares solution of the unknown parameters.					
3	Given the angle measurements at a station along with their standard deviations:	30				

4	Given the variar survey station, do of the standard en	10					
5	 A baseline of calibrated length (μ) 100.0m is measured 5 times. Each measurement is independent and made with the same precision. The sample mean (x̄) and sample standard deviation (s) are calculated from the measurements: x̄ =100.5m s = 0.05m a) Describe the major steps to test the mean value. b) Test at the 5% level of confidence if the measured distance is significantly different from the calibrated distance. The critical value that might be required in the testing is provided in the following table: Percentiles of t distribution 						
	t_{α}						
	Degree of freedom	t _{0.90}	t _{0.95}	t _{0.975}	t _{0.99}		
	1	3.08	6.31	12.7	31.8		
	2	1.89	2.92	4.30	6.96		
	3	1.64	2.35	3.18	4.54		
	4	1.53	2.13	2.78	3.75		
	5	1.48	2.01	2.57	3.36		
6	Given two disstandard deviation a) Calculate the two measts b) Calculate the	15					
					Total Marks:	100	