CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS ATLANTIC PROVINCES BOARD OF EXAMINERS FOR LAND SURVEYORS

SCHEDULE I / ITEM 2

March 2008

LEAST SQUARES ESTIMATION AND DATA ANALYSIS

Note: This examination consists of 6 questions on 2 pages. <u>Marks</u> Q. No Time: 3 hours Value Earned Define and briefly explain the following terms a) Precision b) Accuracy 1 10 c) Root mean square error d) Correlation coefficient e) Redundancy of a linear system Given the following mathematical models $f(\lambda, x) = 0$ C_{λ} C_{x} where f is the vector of the mathematical model, x is the vector of unknown parameters and C_x is its variance matrix, λ is the vector of observations and C_{λ} is its variance matrix. 2 15 a) Provide the linearized form of the given mathematical model. b) Formulate the variation function. c) Derive the least squares solution of the unknown parameters. Given the angle measurements at a station along with their standard deviations: Angle Measurement **Standard Deviation** 134°38'56" 6.7" α 83°17'35" 9.9" β 142°03'14" 4.3" γ α 3 30 Apply the least squares adjustment to the problem using a) Conditional equations (conditional adjustment) b) Observation equations (parametric adjustment)

4	Given the variance-covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $C_{x} = \begin{bmatrix} 0.000532 & 0.000602\\ 0.000602 & 0.000838 \end{bmatrix} m^{2}$					10	
5	 A baseline of calibrated length (μ) 200.0m is measured 5 times. Each measurement is independent and made with the same precision. The sample mean (x̄) and sample standard deviation (s) are calculated from the measurements: x̄ = 200.5m s = 0.05m a) Describe the concept and major steps to test the mean value including related mathematical equations and test statistics. b) Test at the 95% level of confidence if the measured distance is significantly different from the calibrated distance. The critical value that might be required in the testing is provided in the following table: 					20	
	Percentiles of t distribution					20	
		tα					
	Degree of freedom	t _{0.90}	t _{0.95}	t _{0.975}	t _{0.99}		
	1	3.08	6.31	12.7	31.8		
	2	1.89	2.92	4.30	6.96		
	3	1.64	2.35	3.18	4.54		
	4	1.53	2.13	2.78	3.75		
	5	1.48	2.01	2.57	3.36		
6	 Given two distance measurements that are independent and have standard deviations σ₁ = 0.20m and σ₂ = 0.15m, respectively, a) Calculate the standard deviations of the sum and difference of the two measurements. b) Calculate the correlation between the sum and the difference. 					15	
					Total Marks:	100	