ASSOCIATION OF CANADA LANDS SURVEYORS - BOARD OF EXAMINERS WESTERN CANADIAN BOARD OF EXAMINERS FOR LAND SURVEYORS ATLANTIC PROVINCES BOARD OF EXAMINERS FOR LAND SURVEYORS

SCHEDULE I / ITEM 2

March 2003

LEAST SQUARES ESTIMATION AND DATA ANALYSIS

Note:	This examination consists of _5_ questions on _2_ pages.	<u>Marks</u>	
<u>Q. No</u>	Time: 3 hours	Value	Earned
1	Define and explain briefly the following terms: a) Type I and II errors in statistical testing b) Degree of freedom of a linear system c) Accuracy d) Precision e) Unbiasedness of an estimator	10	
2	Perform a least squares adjustment of the following leveling network in which three height differences Δh_i , i = 1, 2, 3 were observed. $\Delta h_1 \qquad \qquad$	20	
3	Given the following direct model for the horizontal coordinates (x, y) of a survey station x and y as a function of ℓ_1 , ℓ_2 and ℓ_3 : $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 & -2 & 1 \\ 5 & 3 & -1 \end{bmatrix} \begin{bmatrix} \ell_1 \\ \ell_2 \\ \ell_3 \end{bmatrix}$ where the covariance matrix of the ℓ 's is $C_{\ell} = \begin{bmatrix} 4 & -2 & -1 \\ -2 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$ a) Compute the covariance matrix for x and y. b) Determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station.	20	

	Given the following mathematical models		
4	$f_1(\ell_1, x_1, x_2) = 0$ C_{ℓ_1} C_{x_1} C_{x_2}		
	$f_2(\ell_2, x_1, x_2) = 0$ C_{ℓ_2}		
	where f_1 and f_2 are vectors of mathematical models, x_1 and x_2 are vectors of unknown parameters, ℓ_1 and ℓ_2 are vectors of observations, C_{ℓ_1} , C_{ℓ_2} , C_{x_1} and C_{x_2} are covariance matrices.		
	a) Formulate the variation function.		
	b) Derive the most expanded form of the least squares normal		
	equation system.	25	
	The following residual vector $\hat{\mathbf{r}}$ and estimated covariance matrix $C_{\hat{\mathbf{r}}}$ were computed from a least squares adjustment using five independent observations with a standard deviation of $\mathbf{s} = 2$ mm and a degree of freedom $\mathbf{u} = 2$:		
	$\hat{\mathbf{r}} = \begin{bmatrix} 4 & 2 & -3 & 9 & -5 \end{bmatrix}$ (mm)		
	$\begin{bmatrix} 9 & -1 & 2 & -3 & 5 \end{bmatrix}$		
	$\begin{bmatrix} -1 & 1 & 1 & 3 & -2 \\ 2 & 1 & 4 & 2 & 2 \end{bmatrix}$ (mm ²)		
	$C_{\hat{r}} = \begin{bmatrix} 2 & 1 & 4 & -2 & 3 \\ -3 & 3 & -2 & 4 & -1 \end{bmatrix}$ (mm)		
	$\begin{bmatrix} 5 & -2 & 3 & -1 & 16 \end{bmatrix}$		
	Given $\alpha = 0.01$,		
F	a) Conduct a global test to decide if there exists any outlier or not.		
3	b) If the test in a) fails, conduct local tests to locate the outlier(s).		
	The critical values that might be required in the testing are provided in the following tables:		
	α 0.001 0.01 0.02 0.05 0.10		
	$c_{a, u=2}^{2}$ 13.82 9.21 7.82 5.99 4.61		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	where $c_{a, u=2}^2$ is determined by the equation $a = \int_{c_{a, u=2}^2}^{\infty} c^2(x) dx$ and		
	K_{α} is determined by the equation $\alpha = \int_{K_{\alpha}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$.		
		25	
	Total Marks:	100	0