ASSOCIATION OF CANADA LANDS SURVEYORS - BOARD OF EXAMINERS WESTERN CANADIAN BOARD OF EXAMINERS FOR LAND SURVEYORS ATLANTIC PROVINCES BOARD OF EXAMINERS FOR LAND SURVEYORS

SCHEDULE I / ITEM 1 MATHEMATICS

February 2001 (1990 Regulations) (Closed Book)

Time: 3 hours

<u>Marks</u>

Note: This examination consists of 10 questions on 2 pages.

1.a) b)	What is the limit of $f(x) = x e^{-x}$ as x goes to infinity? What is the limit of $g(x) = x^{-1} \sin x$ as x goes to zero?	5 5
2.a) b)	Differentiate $f(x) = e^{\sin x}$ with respect to x. Differentiate $g(x) = x^{\sin x}$ with respect to x.	5 5
3.a) b)	Give the first three terms in the Taylor series expansion in x for $(1 + 3x)^{-1}$. What is an expression for the remainder after the previous three terms in the series expansion for $(1 + 3x)^{-1}$?	
4.a)	Set up the integral to compute the area inside an ellipse with semi-major axis a and semi-minor axis b.	5
b)	Set up the integral to compute the arclength around an ellipse with semi- major axis a and semi-minor axis b.	5
5.a)	Given three points in two-dimensional Cartesian space, how can one check for collinearity?	5
b)	Given four points in three-dimensional Cartesian space, how can one check for coplanarity?	5
6.a)	Given a small square matrix A of order 3 with elements $a_{ij} = i + j$ for $i = 1, 2, 3$ and $j = 1, 2, 3$, what is the principal property of A?	5
b)	What is the determinant of the matrix A of order 3 with elements $a_{ij} = i + j$ for $i = 1, 2, 3$ and $j = 1, 2, 3$?	5
7.a)	For a system of linear algebraic equations with zero right-hand side, what can be done for a solution? Illustrate the situation with three simple equations.	5
b)	For a system of linear algebraic equations with nonzero right-hand side which are not independent, what can be done for a solution? Illustrate the situation with three simple equations.	5
8.a)	What is the method of separation of variables for solving differential equations? Illustrate with a simple differential equation.	5
b)	What is the general solution of $d^2x/dt^2 - ax = 0$ for arbitrary scalar a?	5

BOARD OF EXAMINERS FOR CANADA LANDS SURVEYORS WESTERN CANADIAN BOARD OF EXAMINERS FOR LAND SURVEYORS ATLANTIC PROVINCES BOARD OF EXAMINERS FOR LAND SURVEYORS

SCHE	EDULE I / ITEM 1 MATHEMATICS (continued)	February	2001
9.a)	Given two vectors $\underline{\mathbf{a}} = (1, 5, 7)^{\mathrm{T}}$ and $\underline{\mathbf{b}} = (3, 2, 1)^{\mathrm{T}}$, where the T means transpose what is a \mathbf{b}^2	he superscript	5
b)	Given two vectors $\underline{c} = (2, 3, 7)^{T}$ and $\underline{d} = (3, 1, 2)^{T}$, where t T means transpose, what is $\underline{c} \times \underline{d}$?	he superscript	5
10.a)	Given two linear equations: $x + 2y = 8$ and $2x + 3y = 13$, so and y using Cramer's rule.	lve them for x	5
b)	Given the same two linear equations: $x + 2y = 8$ and $2x + 3y$ them for x and y using Gaussian elimination.	v = 13, solve	5
		Total Marks:	100