CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS ATLANTIC PROVINCES BOARD OF EXAMINERS FOR LAND SURVEYORS

SCHEDULE I / ITEM 1 MATHEMATICS

March 2008

Note:	This examination consists of 10 questions on one page.	<u>Marks</u>	
<u>Q. No</u>	<u>Time: 3 hours</u>	Value	Earned
1 a)	Define the continuity of a function $f(x)$ at some point $x = x_0$ as a limit. Use appropriate diagrams.	5	
b)	Define the inverse of a function $f(x)$ at some point $x = x_{o}$, using as an example $f(x) = x^2$. Briefly explain the situation.	5	
2 a)	Given the curve of $f(x) = \sin x$, what is the geometrical interpretation of the corresponding derivative $f'(x) = df(x)/dx = \cos x$ at any arbitrary point x?	5	
b)	Given the curve of $f(x) = \sin x$, what is the geometrical interpretation of the corresponding second derivative $f''(x) = d^2f(x)/dx^2 = -\sin x$ at any arbitrary x?	5	
3 a)	Given three noncollinear points $P_n = (x_n, y_n)$, $n=1, 2, 3$, in the (x,y) plane, how can the centre of the circle with these three points on its circumference be computed?	5	
b)	For the same situation, how can the radius of the circle be computed?	5	
4 a)	Give the first three terms of the series expansion of $(1 + 2x)^{-3}$ about $x = 0$.	5	
b)	What is the general expression for the remainder after the three terms of the preceding series expansion?	5	
5 a)	Given a small matrix $A = [a_{ij}]$ with $a_{ij} = i + j - 2$ for i, j = 1, 2, 3, what is its determinant?	5	
b)	For the same small matrix A, what is the determinant of A^2 (the square of A)? Explain.	5	
6 a)	Given three equations: $x - y + 2z = 4$, $x + 2y + 3z = 5$, $2x + 3y + 4z = 6$, what are x, y and z using Gaussian elimination?	5	
b)	Given the three equations: $x - y + 2z = 0$, $x + 2y + 3z = 0$, $2x + 3y + 4z = 0$, what can be said about the unknowns x, y and z?	5	
7 a)	What is the scalar or inner product of the two vectors $(1.1 \ 2.2 \ 3.3)^{T}$ and $(4.4 \ 5.5 \ 6.6)^{T}$, where T denotes transpose?	5	
b)	What is the vector or cross product of the same two vectors $(1.1 \ 2.2 \ 3.3)^{T}$ and $(4.4 \ 5.5 \ 6.6)^{T}$, where T denotes transpose?	5	
8 a)	What is the geometrical interpretation of the scalar or inner product of two vectors in three dimensional space? Illustrate with diagrams.	5	
b)	What is the geometrical interpretation of the vector or cross product of two vectors in three dimensional space? Illustrate with diagrams.	5	
9 a)	What is a rotation matrix for an angle θ in two dimensions?	5	
b)	What is the corresponding situation in three dimensions? Any special cases?	5	
10 a)	What is an orthogonal matrix? What is its determinant? Give simple examples.	5	
b)	What are symmetric and skew-symmetric matrices? Give simple examples.	5	
	Total Marks:	100	