CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS

C6 - GEODETIC POSITIONING

Although programmable calculators may be used, candidates must show all formulae used, the substitution of values into them, and any intermediate values to 2 more significant figures than warranted for the answer. Otherwise, full marks may not be awarded even though the answer is numerically correct.

Note: This examination consists of 5 questions on 2 pages

<u>Q. No</u>

Time: 3 hours

Value Earned

<u>Marks</u>

<u>Q. No</u>	<u>Time: 5 nouis</u>	Value	Earned
1.	 The ITRF96 to NAD83(CSRS) transformation parameters at epoch 1997.0 and their rate of change are : Translation and their rate of change (in meter, and meter per year respectively) Tx = 0.9910 m Ty = -1.9072 m Tz = -0.5129 m dTx = 0.0000 m/y dTy = 0.0000 m/y dTz = 0.0000 m/y Rotation and their rate of change (in milliarcsecond, and milliarcsecond per year, respectively) Rx = -25.790 mas Ry = -9.650 mas Rz = -11.660 mas dRx = -0.053 mas/y dRy = 0.742 mas/y dRz = 0.032 mas/y Scale and its rate of change DS = 0 dDS = 0 (scale and its rate of change are zero) a) Explain with formulas how this transformation (a so-called 14 parameter transformation) works. b) The rate of change of all parameters is zero with the exception of those related to the rotations (dRx dRy dRz). Why? What do they account for? c) What does NAD83(CSRS) stand for? How has it been realized? What is the level of accuracy related to this datum? 	12 5 8	
2.	 Explain in details how a standalone <u>low-cost</u> GPS receiver calculates its position. On which observations does it rely? Which unknowns are determined? Give the observation equation (formula required). Which additional information is needed and how does the receiver get this information? 	15	
3.	 a) What are the characteristics, the applications and attainable accuracy of: Dual-frequency Real Time Kinematic (RTK)? Precise Point Positioning (PPP)? Single frequency Differential GPS (DGPS)? b) How does the <i>tropospheric</i> delay of the GPS signal impact the solution obtained with the above mentioned methods i.e.: RTK, PPP, DGPS? c) How does the <i>ionospheric</i> delay of the GPS signal impact the solution obtained 	9 3 3	
	with the above mentioned methods i.e.: RTK, PPP, DGPS?		

March 2012

	Traditionally a vertical datum is established by using spirit leveling and gravity measurements.		
4.	a) What is the reference surface used in such a vertical datum? Why does it differ from an ellipsoid and by how much with respect to an ITRF-GRS80 ellipsoid?	5	
	b) In Canada this traditional approach will be replaced in the future by a new modern one. How will the vertical datum then be defined, realized and maintained?	5	
	c) Nowadays GPS is widely used for positioning purposes. The height obtained from GPS is basically a height above the ellipsoid. Would it not therefore be more suitable to drop the geoid as a reference surface completely and to switch to the ellipsoid as vertical datum using ellipsoidal heights only? Argue.	5	
5.	The geodetic coordinates of point A and B with respect to the GRS80 ellipsoid are:		
	Point-A N45° 57' 02."3453 W71°43' 21."3478 Point-B N45° 55' 54."4557 W71°43' 43."6788		
	a) Calculate an approximate value for the geodetic azimuth from A to B with a resolution of 1'. (<i>just giving a numerical result without commenting on how you got it will not be accepted</i>)	15	
	b) Explain the difference between an astronomical and a geodetic azimuth.	5	
	c) Explain the difference between a geodetic azimuth and a grid bearing with respect to a cartographic projection.	5	
	d) What is the maximum difference between a geodetic azimuth and a grid bearing in the UTM projection at a mid-latitude and its influence on the coordinates over a distance of 1 km?	5	
		100	

Some formulae which may be helpful or not depending on the approach you opt for:

$$ds^2 = R_M^2 d\varphi^2 + R_N^2 \cos^2 \varphi \, d\lambda^2$$

$$R_N = \frac{a}{\left(1 - e^2 \sin^2 \varphi\right)^{\frac{1}{2}}}$$

$$R_{M} = \frac{a(1-e^{2})}{\left(1-e^{2}\sin^{2}\varphi\right)^{3/2}}$$

GRS80-values : a = 6378137 m f = 1/298.257222101 $(e^2 = 2f - f^2)$